397 research outputs found

    Logic Programs and Connectionist Networks

    Get PDF
    Graphs of the single-step operator for first-order logic programs—displayed in the real plane—exhibit self-similar structures known from topological dynamics, i.e., they appear to be fractals, or more precisely, attractors of iterated function systems. We show that this observation can be made mathematically precise. In particular, we give conditions which ensure that those graphs coincide with attractors of suitably chosen iterated function systems, and conditions which allow the approximation of such graphs by iterated function systems or by fractal interpolation. Since iterated function systems can easily be encoded using recurrent radial basis function networks, we eventually obtain connectionist systems which approximate logic programs in the presence of function symbols

    The use of ideas of Information Theory for studying "language" and intelligence in ants

    Full text link
    In this review we integrate results of long term experimental study on ant "language" and intelligence which were fully based on fundamental ideas of Information Theory, such as the Shannon entropy, the Kolmogorov complexity, and the Shannon's equation connecting the length of a message (ll) and its frequency (p)(p), i.e. l=logpl = - \log p for rational communication systems. This approach, new for studying biological communication systems, enabled us to obtain the following important results on ants' communication and intelligence: i) to reveal "distant homing" in ants, that is, their ability to transfer information about remote events; ii) to estimate the rate of information transmission; iii) to reveal that ants are able to grasp regularities and to use them for "compression" of information; iv) to reveal that ants are able to transfer to each other the information about the number of objects; v) to discover that ants can add and subtract small numbers. The obtained results show that Information Theory is not only wonderful mathematical theory, but many its results may be considered as Nature laws

    Designing multiplayer games to facilitate emergent social behaviours online

    Get PDF
    This paper discusses an exploratory case study of the design of games that facilitate spontaneous social interaction and group behaviours among distributed individuals, based largely on symbolic presence 'state' changes. We present the principles guiding the design of our game environment: presence as a symbolic phenomenon, the importance of good visualization and the potential for spontaneous self-organization among groups of people. Our game environment, comprising a family of multiplayer 'bumper-car' style games, is described, followed by a discussion of lessons learned from observing users of the environment. Finally, we reconsider and extend our design principles in light of our observations

    Creativity and Autonomy in Swarm Intelligence Systems

    Get PDF
    This work introduces two swarm intelligence algorithms -- one mimicking the behaviour of one species of ants (\emph{Leptothorax acervorum}) foraging (a `Stochastic Diffusion Search', SDS) and the other algorithm mimicking the behaviour of birds flocking (a `Particle Swarm Optimiser', PSO) -- and outlines a novel integration strategy exploiting the local search properties of the PSO with global SDS behaviour. The resulting hybrid algorithm is used to sketch novel drawings of an input image, exploliting an artistic tension between the local behaviour of the `birds flocking' - as they seek to follow the input sketch - and the global behaviour of the `ants foraging' - as they seek to encourage the flock to explore novel regions of the canvas. The paper concludes by exploring the putative `creativity' of this hybrid swarm system in the philosophical light of the `rhizome' and Deleuze's well known `Orchid and Wasp' metaphor

    Pharaoh Ant (Monomorium pharaonis): Newly Identified Important Inhalant Allergens in Bronchial Asthma

    Get PDF
    The nonstinging house ant, Monomorium pharaonis (pharaoh ant), was recently identified as a cause of respiratory allergy. This study was performed to evaluate the extent of sensitization to pharaoh ant, and its clinical significance in asthmatic patients. We carried out skin prick tests in 318 patients with asthma. Specific IgE (sIgE) to pharaoh ant was measured by ELISA, and cross-reactivity was evaluated by ELISA inhibition tests. Bronchial provocation testing was performed using pharaoh ant extracts. Fifty-eight (18.2%) of 318 patients showed positive skin responses to pharaoh ant, and 25 (7.9%) had an isolated response to pharaoh ant. Positive skin responses to pharaoh ant were significantly higher among patients with non-atopic asthma than among those with atopic asthma (26.0% vs. 14.9%, p<0.05). There was significant correlation between sIgE level and skin responses to pharaoh ant (rho=0.552, p<0.001). The ELISA inhibition tests indicated that pharaoh ant allergens had various pattern of cross-reactivity to house dust mites and cockroaches. Bronchial provocation tests to pharaoh ant were conducted for 9 patients, and eight showed typical asthmatic reactions. In conclusion, pharaoh ant is an important source of aeroallergens, and it should be included in the skin test battery for screening the causative allergens in patients with asthma

    Critical Market Crashes

    Full text link
    This review is a partial synthesis of the book ``Why stock market crash'' (Princeton University Press, January 2003), which presents a general theory of financial crashes and of stock market instabilities that his co-workers and the author have developed over the past seven years. The study of the frequency distribution of drawdowns, or runs of successive losses shows that large financial crashes are ``outliers'': they form a class of their own as can be seen from their statistical signatures. If large financial crashes are ``outliers'', they are special and thus require a special explanation, a specific model, a theory of their own. In addition, their special properties may perhaps be used for their prediction. The main mechanisms leading to positive feedbacks, i.e., self-reinforcement, such as imitative behavior and herding between investors are reviewed with many references provided to the relevant literature outside the confine of Physics. Positive feedbacks provide the fuel for the development of speculative bubbles, preparing the instability for a major crash. We demonstrate several detailed mathematical models of speculative bubbles and crashes. The most important message is the discovery of robust and universal signatures of the approach to crashes. These precursory patterns have been documented for essentially all crashes on developed as well as emergent stock markets, on currency markets, on company stocks, and so on. The concept of an ``anti-bubble'' is also summarized, with two forward predictions on the Japanese stock market starting in 1999 and on the USA stock market still running. We conclude by presenting our view of the organization of financial markets.Comment: Latex 89 pages and 38 figures, in press in Physics Report

    Information sharing impact of stochastic diffusion search on differential evolution algorithm

    Get PDF
    This work details the research aimed at applying the powerful resource allocation mechanism deployed in stochastic diffusion search (SDS) to the differential evolution (DE), effectively merging a nature inspired swarm intelligence algorithm with a biologically inspired evolutionary algorithm. The results reported herein suggest that the hybrid algorithm, exploiting information sharing between the population elements, has the potential to improve the optimisation capability of classical DE algorithms. This claim is verified by running several experiments using state-of-the-art benchmarks. Additionally, the significance of the frequency within which SDS introduces communication and information exchange is also investigated
    corecore