
Wright State University Wright State University

CORE Scholar CORE Scholar

Computer Science and Engineering Faculty
Publications Computer Science & Engineering

9-2004

Logic Programs and Connectionist Networks Logic Programs and Connectionist Networks

Pascal Hitzler
pascal.hitzler@wright.edu

Steffen Holldobler

Anthony K. Seda

Follow this and additional works at: https://corescholar.libraries.wright.edu/cse

 Part of the Computer Sciences Commons, and the Engineering Commons

Repository Citation Repository Citation
Hitzler, P., Holldobler, S., & Seda, A. K. (2004). Logic Programs and Connectionist Networks. Journal of
Applied Logic, 2 (3), 273-300.
https://corescholar.libraries.wright.edu/cse/172

This Article is brought to you for free and open access by Wright State University’s CORE Scholar. It has been
accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of
CORE Scholar. For more information, please contact library-corescholar@wright.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CORE

https://core.ac.uk/display/36749002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse
https://corescholar.libraries.wright.edu/cse_comm
https://corescholar.libraries.wright.edu/cse?utm_source=corescholar.libraries.wright.edu%2Fcse%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=corescholar.libraries.wright.edu%2Fcse%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=corescholar.libraries.wright.edu%2Fcse%2F172&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

Logic Programs and Connectionist Networks∗

Pascal Hitzler†, Steffen Hölldobler†, Anthony Karel Seda‡

†Technische Universität Dresden, Department of Computer Science,

01062 Dresden, Germany
‡Department of Mathematics, University College Cork,

Cork, Ireland

Abstract

One facet of the question of integration of Logic and Connectionist Systems,
and how these can complement each other, concerns the points of contact, in terms
of semantics, between neural networks and logic programs. In this paper, we show
that certain semantic operators for propositional logic programs can be computed
by feedforward connectionist networks, and that the same semantic operators for
first-order normal logic programs can be approximated by feedforward connectionist
networks. Turning the networks into recurrent ones allows one also to approximate
the models associated with the semantic operators. Our methods depend on a well-
known theorem of Funahashi, and necessitate the study of when Funahasi’s theorem
can be applied, and also the study of what means of approximation are appropriate
and significant.

Keywords Logic Programming, Metric Spaces, Connectionist Networks.

1 Introduction

It is widely recognized that Logic and Neural Networks are two rather distinct yet major
areas within Computing Science, and that each of them has proved to be especially im-
portant in relation to Artificial Intelligence, both in the context of its implementation and
in the context of providing it with theoretical foundations. However, in many ways Logic,
manifested through Computational Logic or Logic Programming, and Neural Networks

∗To appear in the Journal of Applied Logic, Special Edition on Neural-Symbolic Systems. This is
a revised and extended treatment of results which to date have appeared only in the workshop paper
[HK94] and the conference papers [HS00, HS03a].

1

are quite complementary. For example, there is a widespread belief that the ability to rep-
resent and reason about structured objects and structure-sensitive processes is crucial for
rational agents (see, for example, [FP88, New80]), and Computational Logic is well-suited
to doing this. On the other hand, rational agents should have additional properties which
are not easily found in logic based systems such as, for example, the ability to learn, the
ability to adapt to new environments, and the ability to degrade gracefully; these latter
properties are typically met by Connectionist Systems or Neural Networks.

For such reasons, there is considerable interest in integrating the Logic based and Neu-
ral Network based approaches to Artificial Intelligence with a view to bringing together
the advantages to be gained from connectionism and from symbolic AI. However, in at-
tempting to do this, there are considerable obstacles to be overcome. For example, from
the computational point of view, most connectionist systems developed so far are propo-
sitional in nature. John McCarthy called this a propositional fixation [McC88] in 1988,
and not much has changed since then. Although it is known that connectionist systems
are Turing-equivalent, we are unaware of any connectionist reasoning system which fully
incorporates the power of symbolic computation. Systems like SHRUTI [SA93] or the
BUR-calculus [HKW00] allow n -place predicate symbols and a finite set of constants
and, thus, are propositional in nature. Systems like CHCL [Höl93] allow a fixed num-
ber of first-order clauses, but cannot copy clauses on demand and, thus, the entailment
relation is decidable. Connectionist mechanisms for representing terms like holographic
reduced representations [Pla91] or recursive auto-associative memories [Pol88] and vari-
ations thereof can handle some recursive structures, but as soon as the depth of the
represented terms increases, the performance of these methods degrades quickly [McI00].
Furthermore, whilst logic programs have a rather well-developed theory of their seman-
tics, it is not so clear how Neural Networks can be assigned any well-defined meaning
which plays an important role comparable with that played by the supported models, the
stable model or the well-founded model typically assigned to a logic program to capture
its meaning.

It is an important fact that the models just mentioned are fixed points of various operators
determined by programs. In particular, the supported models, or Clark completion seman-
tics [Cla78], of a normal logic program P coincide with the fixed points of the immediate
consequence operator TP . Furthermore, the fixed points themselves are frequently found
by iterating the corresponding operators.

The previous observation establishes a clear semantical connection between logic pro-
grams and neural networks which is the main focus of study in this paper, and it arises
because neural networks can be used to compute semantic operators such as TP . Specif-
ically, in this paper we develop this link between propositional (as well as first-order)
logic programs and recursive networks. Our first main observation is that for any given
propositional logic program P , one can construct a feedforward connectionist network
which can compute the immediate consequence operator TP . Unfortunately, the meth-
ods used in the propositional case do not extend immediately to the first-order case, and
our second main observation is that approximation techniques can be used instead to
approximate, arbitrarily well, both the semantic operators themselves and also their fixed

2

points, at least if the feedforward networks are turned into recurrent ones. Our methods
here are based on a well-known theorem of Funahashi [Fun89] which shows that every
continuous function on the reals can be uniformly approximated by a 3-layer feedforward
neural network. However, application of Funahashi’s theorem depends on TP itself being
continuous in a precise sense to be defined later. This in turn leads us to study conditions
under which TP meets this criterion, and in doing this we find it convenient to work
with quite general semantic operators employing many valued logics. Furthermore, it also
raises rather technical questions concerning what are the appropriate approximations to
use.

Thus, the overall structure of the paper is as follows. In Section 2, we collect together
the basic notions we need concerning logic programs, neural networks, and metric spaces.
In Section 3, we establish our claim above that TP can be computed, for propositional
programs P , by feedforward connectionist networks. In Section 4, we take up the issue
of extending the results of Section 3 to the first-order case by means of approximation.
This involves a fairly detailed study of the (topological) continuity of semantic operators,
extending results to be found in [Sed95], before we can ultimately take up the question of
applying results such as Funahashi’s theorem and discussing measures of approximation
appropriate to the study of neural networks. Finally, in Section 5, we present our conclu-
sions and discuss future work. In essence, our techniques and thinking are somewhat in
the spirit of dynamical sytems, and provide a link between the areas of logic programming,
topology and connectionist systems.

Acknowledgements The authors wish to thank two anonymous referees for comments
which helped to improve the presentation of this paper. The last named author wishes
to thank the following people and institutions for their support of work related to the
results contained in this paper: (i) the members of Professor Steffen Hölldobler’s Knowl-
edge Representation and Reasoning Group at TU Dresden, (ii) Deutscher Akademischer
Austausch Dienst (DAAD), and (iii) the Boole Centre for Research in Informatics at
University College Cork.

2 Basic Notions

In this section, we collect together the basic concepts and notation we need
from logic programming, metric spaces and connectionist networks, as can be
found, for example, in [Llo88, Wil70, HKP91]. A reader familiar with these
notions may skip this section.

2.1 Logic Programs

A (normal) logic program is a finite set of clauses of the form

∀(A← L1 ∧ · · · ∧ Ln),

3

where n ∈ N may differ for each clause, A is an atom in some first-order language L
and L1, . . . , Ln are literals, that is, atoms or negated atoms in L . As is customary in
logic programming, we will write such a clause in the form

A← L1 ∧ · · · ∧ Ln,

in which the universal quantifier is understood. Then A is called the head of the clause,
each Li is called a body literal of the clause and their conjunction L1 ∧ · · · ∧Ln is called
the body of the clause. We allow n = 0 , by an abuse of notation, which indicates that the
body is empty; in this case, the clause is called a unit clause or a fact. We will occasionally
use the notation A ← body for clauses, so that body stands for the conjunction of the
body literals of the clause. If no negation symbol occurs in a logic program, the program
is called a definite logic program.

The Herbrand base underlying a given program P will be denoted by BP , and the
set of all Herbrand interpretations by IP , and we note that the latter can be identified
simultaneously with the power set of BP and with the set 2BP of all functions mapping
BP into the set 2 consisting of two distinct elements. The set 2 is usually considered
to be the set {t, f} of truth values. Any interpretation can be extended to literals,
clauses and programs in the usual way. A model for P is an interpretation which maps
P to t . The immediate consequence operator (or single-step operator) TP , mapping
interpretations to interpretations, is defined as follows. Let I be an interpretation and
let A be an atom. Then TP (I)(A) = t if and only if there exists a ground instance
A← L1 ∧ . . . ∧ Ln of a clause in P such that I(L1 ∧ . . . ∧ Ln) = t . By ground(P) , we
will denote the set of all ground instances of clauses in P .

The immediate consequence operator is a convenient tool for capturing the logical mean-
ing, or semantics, of logic programs: an interpretation I is a model for a program P if
and only if TP (I) ≤ I , that is, if and only if I is a pre-fixed point of TP , where 2BP is
endowed with the pointwise ordering induced by the unique partial order defined on 2 in
which f < t . Fixed points of TP are called supported models for P . They coincide with
the models for the so-called Clark completion of a program [Cla78] and are considered to
be particularly well-suited to capturing the intended meaning of logic programs.

2.2 Metric Spaces and Contraction Mappings

Let X be a non-empty set. A function d : X ×X → R is called a metric (on X), and
the pair (X, d) is called a metric space, if the following properties are satisfied.

1. For all x, y ∈ X , we have d(x, y) ≥ 0 and d(x, y) = 0 iff x = y .

2. For all x, y ∈ X , we have d(x, y) = d(y, x) .

3. For all x, y, z ∈ X , we have d(x, z) ≤ d(x, y) + d(y, z) .

Let d be a metric defined on a set X . Then a sequence (xn) in X is said to converge to
x ∈ X , and x is called the limit of (xn) , if, for each ε > 0 , there is a natural number

4

n0 such that for all n ≥ n0 we have d(xn, x) < ε . Note that the limit of any sequence
is unique if it exists. Furthermore, a sequence (xn) is said to be a Cauchy sequence if,
for each ε > 0 , there is a natural number n0 such that whenever m,n ≥ n0 we have
d(xm, xn) < ε . It is clear that any sequence which converges is a Cauchy sequence. On
the other hand, a metric space (X, d) is called complete if every Cauchy sequence in X
converges.

Let (X, d) be a metric space. Then a function f : X → X is called a contraction mapping
or simply a contraction if there exists a real number λ ∈ [0, 1) satisfying d(f(x), f(y)) ≤
λ d(x, y) for all x, y ∈ X . Finally, an element x0 (of a set X) is called a fixed point of
a function f : X → X if, as usual, we have f(x0) = x0 .

One of the main results concerning contraction mappings defined on complete metric
spaces is the following well-known theorem.

2.1 Theorem (Banach Contraction Mapping Theorem [Wil70]) Let f be a con-
traction mapping defined on a complete metric space (X, d) . Then f has a unique fixed
point x0 ∈ X . Furthermore, the sequence x, f(x), f(f(x)), . . . converges to x0 for any
x ∈ X .

If a program P is such that there exists a metric which renders TP a contraction,
then Theorem 2.1 shows that P has a unique supported model. Semantic analysis of
logic programs along these general lines was initiated in [Fit94], and has subsequently
been studied and generalized by a number of authors. The recent publication [HS03b]
contains both a state-of-the-art treatment using this approach and a comprehensive list
of references on this topic.

The following definition will be very convenient for our purposes.

2.2 Definition A normal logic program P is called strongly determined if there exists
a complete metric d on IP such that TP is a contraction with respect to d .

It follows from Theorem 2.1 that every strongly determined program has a unique sup-
ported model, that is, is uniquely determined. Certain well-known classes of programs
turn out to contain only strongly determined programs, amongst these are the classes of
acyclic and acceptable programs [Bez89, Cav91, AP93, Fit94], which are fundamental in
termination analysis under Prolog. More generally, all programs called Φω -accessible in
[HS03b] are strongly determined. Indeed, we will take the trouble to define acyclic pro-
grams next since we will need this notion in subsequent discussions. To do this, we need
first to recall the notion of level mapping, familiar in the context of studies of termination,
see [AP93] for example.

A level mapping for a program P is a mapping l : BP → α for some ordinal α . As
usual, we always assume that l has been extended to all literals by setting l(¬A) = l(A)
for each A ∈ BP . An ω -level mapping for P is a level mapping l : BP → N .

2.3 Definition A logic program P is called acyclic if there exists an ω -level mapping

5

pk(t) - vk(t + ∆t)

6

θk

���
���*

vn(t)

-vj(t)

HHH
HHHj

v1(t)

wkn

wkj

wk1

...

...

Figure 1: Unit k in a connectionist network.

for P such that for each clause A← L1 ∧ · · · ∧ Ln in ground(P) we have l(A) > l(Li)
for all i = 1, . . . , n .

2.3 Connectionist Networks

A connectionist network is a directed graph. A unit k in this graph is characterized,
at time t , by its input vector (ik1(t), . . . , iknk

(t)) , its potential pk(t) ∈ R , its threshold
θk ∈ R , and its value vk(t) . Units are connected via a set of directed and weighted
connections. If there is a connection from unit j to unit k , then wkj ∈ R denotes the
weight associated with this connection, and ikj(t) = wkjvj(t) is the input received by k
from j at time t . Figure 1 shows a typical unit. The units are updated synchronously. In
each update, the potential and value of a unit are computed with respect to an activation
and an output function respectively. All units considered in this paper compute their
potential as the weighted sum of their inputs minus their threshold:

pk(t) =

(
nk∑
j=1

wkjvj(t)

)
− θk.

Having fixed the activation function, we consider three types of units mainly distinguished
by their output function. A unit is said to be a binary threshold unit if its output function
is a threshold function:

vk(t + ∆t) =

{
1 if pk(t) ≥ 0,
0 otherwise.

A unit is said to be a linear unit if its output function is the identity and its threshold
θ is 0 . A unit is said to be a sigmoidal or squashing unit if its output function φ is
non-decreasing and is such that limt→∞(φ(pk(t)) = 1 and limt→−∞(φ(pk(t)) = 0 . Such
functions are called squashing functions.

6

In this paper, we will only consider connectionist networks where the units can be orga-
nized in layers. A layer is a vector of units. An n -layer feedforward network F consists
of the input layer, n − 2 hidden layers, and the output layer, where n ≥ 2 . Each unit
occurring in the i -th layer is connected to each unit occurring in the (i+1) -st layer,
1 ≤ i < n . Let r and s be the number of units occurring in the input and output lay-
ers, respectively. A connectionist network F is called a multilayer feedforward network
if it is an n -layer feedforward network for some n . A multilayer feedforward network F
computes a function fF : Rr → Rs as follows. The input vector (the argument of fF)
is presented to the input layer at time t0 and propagated through the hidden layers to
the output layer. At each time point, all units update their potential and value. At time
t0 + (n − 1)∆t , the output vector (the image under fF of the input vector) is read off
the output layer.

For a 3-layer network with r linear units in the input layer, squashing units in the hidden
layer, and a single linear unit in the output layer, the input-output function of the network
as described above can thus be obtained as a mapping f : Rr → R with

f(x1, . . . , xr) =
∑

j

cjφ

(∑
i

wjixi − θj

)
,

where cj is the weight associated with the connection from the jth unit of the hidden
layer to the single unit in the output layer, φ is the squashing output function of the
units in the hidden layer, wji is the weight associated with the connection from the ith
unit of the input layer to the jth unit of the hidden layer and θj is the threshold of the
jth unit of the hidden layer.

It is our aim to obtain results on the representation or approximation of consequence
operators by input-output functions of 3-layer feedforward networks. Some of our results
rest on the following theorem, which is due to Funahashi, see [Fun89].

2.4 Theorem Suppose that φ : R→ R is a non-constant, bounded, monotone increasing
and continuous function. Let K ⊆ Rn be compact, let f : K → R be a continuous
mapping and let ε > 0 . Then there exists a 3-layer feedforward network with squashing
function φ whose input-output mapping f̄ : K → R satisfies maxx∈K d(f(x), f̄(x)) < ε ,
where d is a metric which induces the natural topology1 on R .

In other words, each continuous function f : K → R can be uniformly approximated by
input-output functions of 3 -layer networks. For our purposes, it will suffice to assume
that K is a compact subset of the set of real numbers, so that n = 1 in the statement
of the theorem.

An n -layer recurrent network N consists of an n -layer feedforward network such that
the number of units in the input and output layer are identical. Furthermore, each unit
in the k -th position of the output layer is connected with weight 1 to the unit in the
k -th position of the input layer, where 1 ≤ k ≤ N and N is the number of units in

1For example, d(x, y) = |x− y| .

7

6 6� �� � 6 6� �� �
input layer

�
�
�
�
�
��

�
�
�
�
�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
�

�
��36

A
A

A
A

A
AK

A
A

A
A

A
AK

@
@

@
@

@
@I

@
@

@
@

@
@I

Q
Q

Q
Q

Q
Q

Q
QQk 6

hidden layer

6

�
�
�
�
�
��

�
�
�
�
�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
�

�
��3

A
A

A
A

A
AK

A
A

A
A

A
AK

@
@

@
@

@
@I

@
@

@
@

@
@I6

Q
Q

Q
Q

Q
Q

Q
QQk

output layer

� �� � � �� �

. . .

. . .

. . .

. . .

Figure 2: Sketch of a 3-layered recurrent network.

the output (or input) layer. Figure 2 shows a 3 -layer recurrent network. The subnetwork
consisting of the three layers and the connections between the input and the hidden as
well as between the hidden and the output layer is a 3-layer feedforward network called
the kernel of N .

3 Propositional Logic Programs

In this section, we consider the propositional case following [HK94] and show
that for each logic program P we can construct a 3-layer feedforward network
of binary threshold units computing TP . Turning such a network into a recur-
rent one allows one to compute the unique fixed point of TP provided that P
is strongly determined.

The main question addressed in this section is: can we specify a connectionist network
of binary threshold units for a propositional logic program P such that it computes TP

and, if it exists, the least fixed point of TP ? It is well-known that 3-layer feedforward
connectionist networks with sigmoidal hidden layer are universal approximators [Fun89,
HSW89]. Hence, we expect that recurrent networks with a 3-layer feedforward kernel will
do, where the kernel computes TP and, by the recurrent connections, TP is iterated.

8

A B C D E F
1 2 3 4 5 6

0.5 0.5 0.5 0.5 0.5 0.5

6

C
C
C
C
C
C
C
C
C
C
CCO

A
A

A
A

A
A

A
A

A
A

AAK

S
S

S
S

S
S

S
S

S
S

SSo

@
@

@
@

@
@

@
@

@
@

@@I

c
c

c
c

c
c

c
c

c
c

c
c

c
cc

0 w72 w73 w74 w75 w76

θ7 0.5 0.5 0.5 0.5 0.5

7 8 9 10 11 12
A B C D E F

Figure 3: A 2-layer feedforward network of binary threshold units for P2 . The numbers
occurring within the units are thresholds. Connections which are not shown have weight
0 .

The question addressed in the following subsection is whether or not even simpler net-
works, viz. recurrent networks with a 2-layer feedforward kernel of binary threshold units
will do. Such networks are called perceptrons [Ros62]. It is well-known that their comput-
ing capabilities are limited to computing solutions for linearly separable problems [MP72].

3.1 Hidden Layers are Needed

Usually, the need for a hidden layer is shown by demonstrating that the exclusive-or
cannot be modelled by a feedforward network without hidden layers (see [MP72], for
example). A straightforward program to compute the exclusive-or of two propositional
atoms A and B such as the program

P1 = {C ← A ∧ ¬B, C ← ¬A ∧B}

is not definite and from this we can only conclude that 2-layer feedforward networks
cannot compute TP for normal P . An even stronger result is the following.

3.1 Proposition 2-layer connectionist networks of binary threshold units cannot com-
pute TP for definite P .

9

Proof: Consider the following program

P2 = {A← B, A← C ∧D, A← E ∧ F}.

Let F be the 2-layer feedforward network of binary threshold units shown in Figure 3
and assume that the weights in F are selected in such a way that it computes TP2 . Let
wij = 0 and θi = 0.5 if i ∈ [8, 12] , so that no unit encoding the atoms B to F in
the output layer will ever become active and this property is, moreover, independent of
the activation pattern of the input layer. Thus, as far as these units are concerned, the
network behaves correctly as no atom B to F is evaluated to t by TP2(I) for any
interpretation I . For unit 7 to behave correctly, we have to find a threshold θ7 and
weights w7j , 1 ≤ j ≤ 6 , such that

TP2(I)(A) = t iff w71v1 + w72v2 + w73v3 + w74v4 + w75v5 + w76v6 − θ7 ≥ 0, (1)

where I = (v1, . . . , v6) is the current interpretation, that is, the activation or output
pattern of the input layer. Obviously, the output of unit 1 should not influence the
potential of unit 7 and hence w71 = 0 . Thus, (1) reduces to

TP2(I)(A) = t iff w72v2 + w73v3 + w74v4 + w75v5 + w76v6 − θ7 ≥ 0. (2)

As the conjunction in the conditions of clauses is commutative, (2) can be transformed to

TP2(I)(A) = t iff w72v2 + w74v3 + w73v4 + w75v5 + w76v6 − θ7 ≥ 0

and
TP2(I)(A) = t iff w72v2 + w73v3 + w74v4 + w76v5 + w75v6 − θ7 ≥ 0.

Hence, with w1 = 1
2
(w73 + w74) and w2 = 1

2
(w75 + w76) equation (2) becomes

TP2(I)(A) = t iff w72v2 + w1(v3 + v4) + w2(v5 + v6)− θ7 ≥ 0. (3)

As the disjunction between clauses is commutative, using an argument similar to that
used before we find w = 1

3
(w72 + w1 + w2) such that (3) becomes

TP2(I)(A) = t iff w(v2 + v3 + v4 + v5 + v6)− θ7 ≥ 0. (4)

Thus, with x =
∑6

j=2 vj we obtain the polynomial wx − θ7 . Now, for F to compute
TP2 the following must hold.

wx− θ7 < 0 if x = 0 (v2 = . . . = v6 = 0).
wx− θ7 ≥ 0 if x = 1 (v2 = 1, v3 = . . . = v6 = 0).
wx− θ7 < 0 if x = 2 (v2 = v4 = v6 = 0, v3 = v5 = 1).

However, the first derivative of the polynomial wx − θ7 cannot change its sign and,
consequently, there cannot be weights and thresholds such that the 2-layer feedforward
network computes TP2 . �

10

A B C D E F

0.5 0.5 0.5 0.5 0.5 0.5

�
�
�
�
�
��

�
�
�
�
�
��

C
C
C
C
C
CO

C
C
C
C
C
CO

S
S

S
S

S
So

0.5 1.5 1.5

S
S

S
S

S
So

c
c

c
c

c
c

cc

0.5 0.5 0.5 0.5 0.5 0.5

A B C D E F

Figure 4: A 3-layer feedforward network of binary threshold units computing TP2 . Only
connections with non-zero weights are shown, and these connections have weight 1 . The
numbers occurring within units denote thresholds.

This result shows the need for hidden layers and it is easy to verify that the 3-layer
feedforward network of binary threshold units shown in Figure 4 computes TP2 for the
program P2 .

One should observe that each rule R in P2 is mapped from the input to the output layer
through exactly one unit in the hidden layer. The potential of this unit is greater than
0 at t0 + ∆t and, thus, the unit becomes active at t0 + ∆t if and only if each unit in
the input layer representing a condition of R is active at t0 , that is, if and only if each
condition of R is assigned t . The potential of the output unit representing A is greater
than 0 at t0 + 2∆t and, thus, the unit becomes active at t0 + 2∆t if and only if at least
one hidden unit that is connected to A is active at t0 + ∆t .

Consequently, the number of units in the hidden layer as well as the number of connections
between the hidden and the output layer with non-zero weight is equal to the number of
clauses in P . Furthermore, the number of connections between the input and the hidden
layer with non-zero weight is equal to the number of literals occurring in the conditions
of program clauses, and the number of units in the input and output layers is equal to
the number of propositional variables occurring in the program. Hence, the size of the
network is bounded by the size of the program, and the operator TP is computed in
constant time, viz. in 2 steps.

These construction principles are extended to normal programs in the following subsection.

11

3.2 Relating Propositional Programs to Networks

3.2 Theorem For each program P , there exists a 3-layer feedforward network comput-
ing TP .

Proof: Let m and n be the number of propositional variables and the number of clauses
occurring in P , respectively. Without loss of generality, we may assume that the variables
are ordered. The network associated with P can now be constructed by the following
translation algorithm:

1. The input and output layer is a vector of binary threshold units of length m , where
the i -th unit in the input and output layer represents the i -th variable, 1 ≤ i ≤ m .
The threshold of each unit occurring in the input or output layer is set to 0.5 .

2. For each clause of the form A ← L1 ∧ . . . ∧ Lk , k ≥ 0 , occurring in P , do the
following.

2.1 Add a binary threshold unit c to the hidden layer.

2.2 Connect c to the unit representing A in the output layer with weight 1.

2.3 For each literal Lj , 1 ≤ j ≤ k , connect the unit representing Lj in the input
layer to c and, if Lj is an atom, then set the weight to 1 ; otherwise set the
weight to −1 .

2.4 Set the threshold θc of c to l−0.5 , where l is the number of positive literals
occurring in L1 ∧ . . . ∧ Lk .

Each interpretation I for P can be represented by a binary vector (v1, . . . , vm) . Such
an interpretation is given as input to the network by externally activating corresponding
units of the input layer at time t0 . It remains to show that TP (I)(A) = t if and only if
the unit representing A in the output layer becomes active at time t0 + 2∆t .

If TP (I)(A) = t , then there is a clause A ← L1 ∧ . . . ∧ Lk in P such that for all
1 ≤ j ≤ k we have I(Lj) = t . Let c be the unit in the hidden layer associated with
this clause according to item 2.1 of the construction. From 2.3 and 2.4 we conclude that
c becomes active at time t0 + ∆t . Consequently, 2.2 and the fact that units occurring in
the output layer have a threshold of 0.5 (see 1.) ensure that the unit representing A in
the output layer becomes active at time t0 + 2∆t .

Conversely, suppose that the unit representing the atom A in the output layer becomes
active at time t0 + 2∆t . From the construction of the network, we find a unit c in the
hidden layer which must have become active at time t0 +∆t . This unit is associated with
a clause A ← L1 ∧ . . . ∧ Lk . If k = 0 , that is, if the body of the clause is empty, then,
according to item 2.4, c has a threshold of −0.5 . Furthermore, according to item 2.3,
c does not receive any input, that is, pc = 0 + 0.5 and consequently c will always be
active. Otherwise, if k ≥ 1 , then c becomes active only if each unit in the input layer
representing a positive literal and no unit representing a negative literal in the body of

12

A B C

0.5 0.5 0.5

�
�
�
�
�
��

1
�

�
�

�
�
�7

−1
C
C
C
C
C
CO−1

�
�
�
�
�
��

1

0.5 0.5

�
�

�
�

�
�7

1
�
�
�
�
�
��

1

0.5 0.5 0.5

A B C

A B C

0.5 0.5 0.5

�
�
�
�
�
��

1
�

�
�

�
�

��

−1

6−1

�
�
�
�
�
��

1

−0.5 0.5 0.5

6

1
�
�
�
�
�
��

1

6

1

0.5 0.5 0.5

A B C

Figure 5: Two 3-layer feedforward networks of binary threshold units computing TP1

and TP3 , respectively. Only connections with non-zero weight are shown. The number
occurring within units denote thresholds.

the clause is active at time t0 (see items 2.3 and 2.4). Hence, we have found a clause
A ← L1 ∧ . . . ∧ Lk such that for all 1 ≤ j ≤ k we have I(Lj) = t and consequently
TP (I)(A) = t . �

As an example, reconsider

P1 = {C ← A ∧ ¬B, C ← ¬A ∧B}

and extend it to
P3 = {A, C ← A ∧ ¬B, C ← ¬A ∧B}.

Their corresponding connectionist networks are shown in Figure 5. One should observe
that P3 exemplifies the representation of unit clauses in 3-layer feedforward networks.2

As already mentioned at the end of Subsection 3.1, the number of units and the number
of connections in a network F corresponding to a program P are bounded by O(m+n)
and O(m× n) , respectively, where n is the number of clauses and m is the number of
propositional variables occurring in P . Furthermore, TP (I) is computed in 2 steps. As
the sequential time to compute TP (I) is bounded by O(n×m) (assuming that no literal

2We can save the unit in the hidden layer corresponding to the unit clause, if we change the threshold
of the unit representing A in the output layer to −0.5 .

13

occurs more than once in the conditions of a clause), the parallel computational model is
optimal.3

We can now apply the Banach contraction mapping theorem, Theorem 2.1, to obtain the
following result.

3.3 Corollary Let P be a strongly determined (propositional) program. Then there ex-
ists a 3-layer recurrent network such that each computation starting with an arbitrary
initial input converges and yields the unique fixed point of TP , that is, the unique sup-
ported model for P .

Let us mention in passing that a kind of converse of Corollary 3.3 also holds, as follows. Let
P be a (propositional) program such that the corresponding network has the property
that each computation starting with an arbitrary initial input converges, and in all cases
converges to the same state. Then this means that iteration of the TP -operator exhibits
the same behaviour, that is, for each initial interpretation it yields one and the same
constant value after a finite number of iterations. By [HS01a, Theorem 2], this suffices to
guarantee the existence of a complete metric which renders TP a contraction. A direct
proof of this observation is given in [HK94].

Returning to the programs P1 and P3 again, we observe that both programs are strongly
determined4. Hence, Figure 5 shows the kernels of corresponding recurrent networks
which compute the least fixed point of TP1 (the interpretation represented by the vector
(0, 0, 0)) and of TP3 (the interpretation represented by the vector (1, 0, 1)).

The time needed by the network to settle down into the unique stable state is equal to
the time needed by a sequential machine to compute the least fixed point of TP in the
worst case. As an example, consider the definite program

P4 = {A1} ∪ {Ai+1 ← Ai | 1 ≤ i < n}.

The least fixed point of TP is the interpretation which evaluates each Ai , 1 ≤ i ≤ n ,
to t . Using the technique described in [DG84] and [Scu90], it can be computed in O(n)
steps.5 Obviously, the parallel computational model needs as many steps. More generally,
let P be a definite program containing n clauses. The time needed by the network to
settle down into the unique stable state is 3n in the worst case and, thus, the time is
linear with respect to the number of clauses occurring in the program. This comes as
no surprise as it follows from [JL77] that satisfiability of propositional Horn formulae is
P -complete and, thus, is unlikely to be in the class NC (see for example [KR90]). On the
other hand, consider the program

P5 = {Ai | 1 ≤ i ≤ n and i even} ∪ {Ai+1 ← Ai | 1 ≤ i ≤ n and i even}.
3A parallel computational model requiring p(n) processors and t(n) time to solve a problem of size

n is optimal if p(n)× t(n) = O(T (n)) , where T (n) is the sequential time to solve this problem (see for
example [KR90]).

4They are even acceptable, as can be seen by mapping C to 2 , and A as well as B to 1 and
considering the model I(A) = I(C) = t and I(B) = f .

5To be precise, the algorithm described in [DG84] needs O(n) time, where n denotes the total
number of occurrences of propositional variables in the formula.

14

The least model mapping each atom to t is computed in five steps by the recurrent
network corresponding to P5 .

3.3 Extensions

In this subsection, various extensions of the basic model developed in Subsection 3.2 are
briefly discussed. In particular, we focus on learning, rule extraction and propositional
modal logics.

Learning The networks corresponding to logic programs and constructed by the trans-
lation algorithm presented in the proof of Theorem 3.2 cannot be trained by the usual
learning methods applied to connectionist systems. It was observed in [dGZdC97] (see also
[dGZ99, dGBG02]) that results similar to Theorem 3.2 and Corollary 3.3 can be achieved
if the binary threshold units occurring in the hidden layer of the feedforward kernels are
replaced by sigmoidal units. We omit the technical details here and refer to the above-
mentioned literature. Such a move renders the kernels accessible to the backpropagation
algorithm, a standard technique for training feedforward networks [RHW86].

Rule Extraction After training a feedforward network with sigmoidal units in the
hidden layer, the knowledge encoded in the network is mostly inaccessible to a human
without postprocessing. Numerous techniques have been proposed to extract rules from
trained feedforward networks (see for example [ADT95] and [dGBG01]). We can now en-
vision a cycle in which a given (preliminary) logic program is translated into a feedforward
network, this network is trained by examples using backpropagation, and a new (refined)
logic program is extracted from the network after training (see [TS94]). The reference
[dGBG02] contains several examples of such cyclic knowledge processing.

Propositional Modal Logics The approach discussed so far has been extended to
(propositional) modal programs , where literals occurring in a clause may be prefixed by
the modalities � and ♦ , clauses are labelled by the world in which they hold, and a
finite set of relations between worlds is given [dGLG02]. It was shown that Theorem 3.2
can be extended to such modal programs in that for each such program there exists
a 3-layer connectionist network computing the modal fixed point operator of the given
program. The main idea is to construct for each world a 3-layer feedforward network
using a variation of the translation algorithm specified in the proof of Theorem 3.2 and
then to connect the worlds with respect to the given set of relations between worlds and
the usual Kripke semantics of the modalities. It is an interesting open problem to show
how to model the temporal aspects of reasoning with respect to modal programs within
a connectionist setting other than by just copying the complete network from one point
in time to the next one.

15

6�
input layer/unit

Q
Q

Q
Q

Q
Q

Q
QQk

@
@

@
@

@
@I

�
�

�
�

�
��

�
�

�
�

�
�

�
��3

hidden layer

�
�

�
�

�
�

�
��3

�
�

�
�

�
��

@
@

@
@

@
@I

Q
Q

Q
Q

Q
Q

Q
QQk

output layer/unit

� �

�

. . .

. . .

Figure 6: Sketch of a recurrent network for a first-order logic program.

4 First-Order Logic Programs

In this section, we extend the approach presented in Section 3 to the first-order
case. In particular, we consider conditions under which semantic operators for
first-order logic programs as well as their fixed points can be approximated by
connectionist networks.

In the first-order case, (Herbrand) interpretations usually consist of countably many
ground atoms. Hence, the simple solution for the propositional case, where each ground
atom is represented by a binary threshold unit in the input and the output layer, is no
longer feasible. To extend the representational capability of the networks used, binary
threshold units are replaced by sigmoidal ones. The values generated by sigmoidal units
are real numbers, and we will use real numbers to represent interpretations. In Figure 6,
the recurrent nets considered in this section are sketched. This section extends results
published in [HKS99] and therefore we review the previous work in the following subsec-
tion.

16

4.1 Previous Work

The reference [HKS99] was concerned with the following problem. Suppose we are given a
first-order logic program P together with a continuous consequence operator TP : 2BP →
2BP , where BP is the Herbrand base of P . We want to know whether or not there exists
a class of logic programs such that for each program in this class we can find an invertible
mapping ι : 2BP → R and a function fP : R→ R satisfying the following conditions:

1. TP (I) = I ′ implies fP (ι(I)) = ι(I ′) and fP (r) = r′ implies TP (ι−1(r)) = ι−1(r′) ,

2. TP is a contraction on 2BP iff fP is a contraction on R , and

3. fP is continuous on R .

The first condition ensures that fP is a sound and complete encoding of TP . The second
condition ensures that the contraction property, and thus fixed points, are preserved. The
third condition ensures that we can apply Theorem 2.4 which then yields a 3-layer feed-
forward network with sigmoidal units in the hidden layer approximating fP arbitrarily
well. Moreover, the corresponding recurrent network approximates the least fixed point
of TP arbitrarily well also.

It was shown in [HKS99] that this problem can be solved for the class of acyclic logic
programs with injective level mapping. In the following, we will lift some of these obser-
vations to a much more general level. In particular, we will show that acyclic programs
with injective level mappings represent only a small fraction of the programs for which
fP can be approximated satisfactorily. We will also abstract from the single-step operator
and generalize the approach to more general types of semantic operators.

Throughout the rest of the paper, we will make substantial use of elementary notions and
results from topology, and our standard background reference to this subject is [Wil70].
Indeed, the results presented subsequently are based on the observation that acyclicity
with respect to an injective level mapping is a sufficient, but not necessary, condition for
continuity of the single-step operator with respect to a topology which is homeomorphic
to the Cantor topology on the real line, namely, the query or atomic topology studied in
[BS89, Sed95] and elsewhere in logic programming. We will therefore start by studying the
basic topological facts relevant to our task before turning to the applications we ultimately
want to make of these ideas and methods.

4.2 Continuity of Semantic Operators

From now on, we will impose the standing condition on the language L that it contains
at least one constant symbol and at least one function symbol with arity greater than 0 .
If this is not done, then ground(P) may be a finite set of ground instances of clauses,
and can be treated essentially as a propositional program, for which appropriate methods
were laid out in Section 3.

17

In logic programming semantics, it has turned out to be both useful and convenient
to use many-valued logics. Our investigations will therefore begin by studying suitable
topologies on spaces of many-valued interpretations. We assume we have given a finite set
T = {t1, . . . , tn} of truth values containing at least the two distinguished values t1 and
tn , which are interpreted as being the truth values for “false”, and “true”, respectively. We
also assume that we have truth tables for the usual connectives ∨ , ∧ , ← , and ¬ . Given
a logic program P , we denote the set of all (Herbrand) interpretations or valuations in
this logic by IP,n ; thus IP,n is the set T BP of all functions I : BP → T . If n is clear
from the context, we will use the notation IP instead of IP,n and we note that this usage
is consistent with the one given above for n = 2 . As usual, any interpretation I can be
extended, using the truth tables, to give a truth value in T to any variable-free formula
in L .

4.1 Definition Given any logic program P , the generalized atomic topology Q on IP =
IP,n is defined to be the product topology on T BP , where T = {t1, . . . , tn} is endowed
with the discrete topology.

We note that this topology can be defined analogously for the non-Herbrand case. For
n = 2 , the generalized atomic topology Q specializes to the query topology of [BS89] (in
the Herbrand case) and to the atomic topology Q of [Sed95] (in the non-Herbrand case).
The following results follow immediately since Q is a product of the discrete topology
on a finite set, and hence is a topology of pointwise convergence.

4.2 Proposition For A ∈ BP and ti a truth value, let G(A, ti) = {I ∈ IP,n | I(A) =
ti} . Then the following hold.

(a) Q is the topology generated by the subbase G = {G(A, ti) | A ∈ BP , i ∈ {1, . . . , n}} .

(b) A net (Iλ) in IP converges in Q to I in IP if and only if for every A ∈ BP there
exists some λ0 such that Iλ(A) is constant and equal to I(A) for all λ ≥ λ0 .

(c) Q is a second countable totally disconnected compact Hausdorff topology which is
dense in itself. Hence, Q is metrizable and homeomorphic to the Cantor topology on
the unit interval in the real line.

We note that the second countability of Q rests on the fact that BP is countable, so
that this property does not in general carry over to the non-Herbrand case.

The study of topologies such as Q comes from our desire to be able to control the
iterative behaviour of semantic operators. Topologies which are closely related to order
structures, as common in denotational semantics [AJ94], are of limited applicability since
non-monotonic operators frequently arise naturally in the logic programming context. See
also [Hit01] for a study of these issues.

We proceed next with studying a rather general notion of semantic operator, akin to Fit-
ting’s approach in [Fit02], which generalizes standard notions occurring in the literature.

18

4.3 Definition An operator T on IP is called a consequence operator for P if for every
I ∈ IP the following condition holds: for every ground clause A ← body in P , where
T (I)(A) = ti , say, and I(body) = tj , say, we have that the truth table for ti ← tj yields
the truth value tn , that is, “true”.

It turns out that this notion of consequence operator relates nicely to Q , yielding the
following result which was reported in [Hit01, HS01b]. If T is a consequence operator for
P and if for any I ∈ IP we have that the sequence of iterates Tm(I) converges in Q to
some M ∈ IP , then M is a model, in a natural sense, for P . Furthermore, continuity
of T yields the desirable property that M is a fixed point of T .

Intuitively, consequence operators should propagate “truth” along the implication symbols
occurring in the program. From this point of view, we would like the outcome of the truth
value of such a propagation to be dependent only on the relevant clause bodies. The next
definition captures this intuition.

4.4 Definition Let A ∈ BP and denote by BA the set of all body atoms of clauses with
head A that occur in ground(P) . A consequence operator T is called (P -)local if for
every A ∈ BP and any two interpretations I,K ∈ IP which agree on all atoms in BA ,
we have T (I)(A) = T (K)(A) .

It is our desire to study continuity in Q of local consequence operators. Since Q is a
product topology, it is reasonable to expect that finiteness conditions will be involved,
and indeed conditions which ensure finiteness in the sense of Definition 4.5 below, due to
[Sed95], have made their appearance in this context.

4.5 Definition Let C be a clause in P and let A ∈ BP be such that A coincides with
the head of C . The clause C is said to be of finite type relative to A if C has only
finitely many different ground instances with head A . The program P will be said to be
of finite type relative to A if each clause in P is of finite type relative to A , that is, if
the set of all clauses in ground(P) with head A is finite. Finally, P will be said to be
of finite type if P is of finite type relative to A for every A ∈ BP .

A local variable is a variable which appears in a clause body but not in the corresponding
head. Local variables appear naturally in practical logic programs, but their occurrence
is awkward from the point of view of denotational semantics, especially if they occur in
negated body literals since this leads to the so-called floundering problem, see [Llo88].

It is easy to see that, in the context of Herbrand-interpretations, and if function symbols
are present, then the absence of local variables is equivalent to a program being of finite
type.

4.6 Proposition Let P be a logic program of finite type and let T be a local conse-
quence operator for P . Then T is continuous in Q .

Proof: Let I ∈ IP be an interpretation and let G2 = G(A, ti) be a subbasic neighbour-
hood of T (I) in Q , and note that G2 is the set of all K ∈ IP such that K(A) = ti .

19

We need to find a neighbourhood G1 of I such that T (G1) ⊆ G2 . Since P is of finite
type, the set BA is finite. Hence, the set G1 =

⋂
B∈BA

G(B, I(B)) is a finite intersection
of open sets and is therefore open. Since each K ∈ G1 agrees with I on BA , we obtain
T (K)(A) = T (I)(A) = ti for each K ∈ G1 by locality of T . Hence, T (G1) ⊆ G2 . �

Now, if P is not of finite type, but we can ensure by some other property of P that the
possibly infinite intersection

⋂
B∈BA

G(B, I(B)) is open, then the above proof will carry
over to programs which are not of finite type. Alternatively, we would like to be able to
disregard the infinite intersection entirely under conditions which ensure that we have to
consider finite intersections only, as in the case of a program of finite type. The following
definition is, therefore, quite a natural one to make.

4.7 Definition Let P be a logic program and let T be a consequence operator on IP .
We say that T is (P -)locally finite for A ∈ BP and I ∈ IP if there exists a finite subset
S = S(A, I) ⊆ BA such that we have T (J)(A) = T (I)(A) for all J ∈ IP which agree
with I on S . We say that T is (P -)locally finite if it is locally finite for all A ∈ BP

and all I ∈ IP .

It is easy to see that a locally finite consequence operator is local. Conversely, a local
consequence operator for a program of finite type is locally finite. This follows from the
observation that, for a program of finite type, the sets BA , for any A ∈ BP , are finite.
But a much stronger result holds.

4.8 Theorem A local consequence operator is locally finite if and only if it is continuous
in Q .

Proof: Let T be a locally finite consequence operator, let I ∈ IP , let A ∈ BP , and let
G2 = G(A, T (I)(A)) be a subbasic neighbourhood of T (I) in Q . Since T is locally finite,
there is a finite set S ⊆ BA such that T (J)(A) = T (I)(A) for all J ∈

⋂
B∈S G(B, I(B)) .

By finiteness of S , the set
⋂

B∈S G(B, I(B)) is open, and this suffices for continuity of
T .

For the converse, assume that T is continuous in Q and let A ∈ BP and I ∈ IP be
chosen arbitrarily. Then G2 = G(A, T (I)(A)) is a subbasic open set, so that, by continuity
of T , there exists a basic open set G1 = G(B1, I(B1))∩· · ·∩G(Bk, I(Bk)) with T (G1) ⊆
G2 . In other words, we have T (J)(A) = T (I)(A) for each J ∈

⋂
B∈S′ G(B, I(B)) , where

S ′ = {B1, . . . , Bk} is a finite set. Since T is local, the value of T (J)(A) depends only on
the values J(A) of atoms A ∈ BA . So, if we set S = S ′ ∩BA , then T (J)(A) = T (I)(A)
for all J ∈

⋂
B∈S G(B, I(B)) which is to say that T is locally finite for A and I . Since

A and I were chosen arbitrarily, we obtain that T is locally finite. �

The following corollary was communicated to us by Howard A. Blair in the two-valued
case.

4.9 Corollary Let P be a program, let T be a local consequence operator and let l be

20

an injective ω -level mapping for P with the following property: for each A ∈ BP there
exists an nA ∈ N such that l(B) < nA for all B ∈ BA . Then T is continuous in Q .

Proof: It follows easily from the given conditions that BA is finite for all A ∈ BP , which
implies that T is locally finite. �

We next take a short detour from our discussion of continuity to study the weaker notion
of measurability [Bar66] for consequence operators. For a collection M of subsets of a
set X , we denote by σ(M) the smallest σ -algebra containing M , called the σ -algebra
generated by M . Recall that a function f : X → X is measurable with respect to σ(M)
if and only if f−1(A) ∈ σ(M) for each A ∈ M . If β is the subbase of a topology τ
and β is countable, then σ(β) = σ(τ) . It turns out that local consequence operators
are always measurable with respect to the σ -algebra generated by a generalized atomic
topology.

4.10 Theorem Local consequence operators are measurable with respect to σ(G) =
σ(Q) .

Proof: Let T be a local consequence operator. We need to show that, for each subbasic
set G(A, ti) , we have T−1(G(A, ti)) ∈ σ(G) .

Let A ∈ BP and let t ∈ T both be chosen arbitrarily. Let F be the set of all func-
tions from BA to T , and note that F is countable since BA is countable and T is
finite. Let F ′ be the subset of F which contains all functions f with the following
property: whenever an interpretation I agrees with f on BA , then T (I)(A) = t . Then,⋂

B∈BA
G(B, f(B)) ∈ T−1(G(A, t)) for each f ∈ F ′ .

We obtain by locality of T that, whenever I is an interpretation for which T (I)(A) = t ,
there exists a function fI ∈ F ′ such that fI and I agree on BA , and this yields
T−1(G(A, t)) =

⋃
fI∈F ′

⋂
B∈BA

G(B, I(B)). Since F ′ and BA are countable, the set on
the right hand side of this last equality is measurable, as required. �

We turn now to the study of the continuity of a particular operator introduced by Fitting
[Fit02] to logic programming semantics. To this end, we associate a set P ∗ with each
logic program P by the following construction. Let A ∈ BP . If A occurs as the head of
some unit clause A ← in ground(P) , then replace it by the clause A ← tn , where by
a slight abuse of notation we interpret tn to be an additional atom which we adjoin to
the language L and always evaluate to tn ∈ T , that is, it evaluates to “true”. If A does
not occur in the head of any clause in ground(P) , then add the clause A ← t0 , where
t0 is interpreted as an additional atom which again we adjoin to L and always evaluate
to t0 ∈ T , that is, it evaluates to “false”. The resulting (ground) program, which results
from ground(P) by the changes just given with respect to every A ∈ BP , will be denoted
by P ′ . Now let P ∗ be the set of all pseudo clauses determined by P ′ , that is, the set
of all formulae of the form A ← C1 ∨ C2 ∨ . . . , where the Ci are exactly the bodies of
the clauses in P ′ with head A . We call A the head and BA = C1 ∨ C2 ∨ . . . the body
of such a pseudo clause, and we note that each A ∈ BP occurs in the head of exactly

21

one pseudo clause in P ∗ . Bodies of pseudo clauses are possibly infinite disjunctions, but
this will not pose any particular difficulty with respect to the logics which we are going to
discuss. We note that a program P is of finite type if and only if all bodies of all pseudo
clauses in P ∗ are finite.

Now, if we are given (suitable) truth tables for negation, conjunction and disjunction,
we are able to evaluate the truth values of bodies of pseudo clauses relative to given
interpretations.

4.11 Definition Let P be a logic program. Define the mapping FP : IP,n → IP,n relative
to a given (suitable) logic with n truth values by FP (I) = J , where J assigns to each
A ∈ BP the truth value I(BA) .

We call operators which satisfy Definition 4.11 Fitting operators. If we impose the mild
assumption that tj ← tj evaluates to “true” for every j with respect to the underlying
logic, then we easily obtain that every Fitting operator is a local consequence operator.
This will always be the case in what follows in this paper.

The virtue of Definition 4.11, due to Fitting [Fit02], lies in the fact that several operators
known from the theory of logic programming can be derived from it in a very concise way,
and we refer to [Fit02, DMT00] for a discussion of these matters, see also [HS01b]. We
will now investigate some of these operators in the light of Theorem 4.8. In the following,
we will denote the “true” truth value by t and the “false” truth value by f .

If the chosen logic is classical two-valued logic, then the corresponding Fitting operator is
the single-step or immediate consequence operator TP (for a given program P). Now, if
TP (I)(A) = t , then there exists a clause A← body in ground(P) such that I(body) is
true, and we obtain TP (J)(A) = t whenever J(body) = t . The observation that bodies
of clauses are finite conjunctions leads us to conclude the following lemma.

4.12 Lemma If TP (I)(A) is true, then TP is locally finite for A and I . Furthermore,
TP is continuous if and only if it is locally finite for all A and I with TP (I)(A) = f .

A body
∨

Ci of a pseudo clause is false if and only if all Ci are false. Since TP is a
Fitting operator, we obtain TP (I)(A) = f if and only if all Ci are false. If we require TP

to be locally finite for A and I , then there must be a finite set S ⊆ BA such that any
J ∈ IP which agrees with I on S renders all Ci false. These observations now easily
yield the following theorem from [Sed95].

4.13 Theorem Let P be a normal logic program. Then TP is continuous if and only
if, for each I ∈ IP and for each A ∈ BP with TP (I)(A) = f , either there is no clause
in P with head A or there exists a finite set S(I, A) = {A1, . . . , Ak, B1, . . . , Bk′} ⊆ BA

with the following properties:

(i) A1, . . . , Ak are true in I and B1, . . . , Bk′ are false in I .

(ii) Given any clause C with head A , at least one ¬Ai or at least one Bj occurs in
the body of C .

22

p q p ∧ q p ∨ q ¬p
t t t t f
t u u t f
t f f t f
u t u t u
u u u u u
u f f u u
f t f t t
f u f u t
f f f f t

Table 1: Connectives for Kleene’s strong three-valued logic.

In the case of Kleene’s strong three-valued logic, with set of truth values T = {t, u, f}
and logical connectives as in Table 1, the associated Fitting operator was introduced
in [Fit85] and is denoted by ΦP , for a given program P . As in the case of classical
two-valued logic, we obtain the following lemma.

4.14 Lemma If ΦP (I)(A) = t , then ΦP is locally finite for A and I . Furthermore, ΦP

is continuous if and only if it is locally finite for all A and I with ΦP (I)(A) ∈ {u, f} .

Obtaining a theorem analogous to Theorem 4.13 is now straightforward, but tedious,
and we omit the details. Similar considerations apply to the operator Ψ on Belnap’s
four-valued logic [Fit02] and to the operators from [HS99].

We mention in passing the non-monotonic Gelfond-Lifschitz operator [GL88] in classical
two-valued logic, whose fixed points yield the stable models of the program in question.
It turns out that this operator is not a consequence operator in the sense discussed in
this paper, and attempts to characterize continuity of it will involve different methods (by
means of the results from [Wen02], for example).

4.3 Approximation by Artificial Neural Networks

We have now finished our general preparations and continue next with our main task,
namely, the study of the representability of logic programs by means of connectionist
networks. We recall that the Cantor set C is a compact subset of the real line, and the
topology which C inherits as a subspace of R coincides with the Cantor topology on C .
Also, the Cantor space C is homeomorphic to IP,n when the latter is endowed with a
generalized atomic topology Q . Hence, if a consequence operator T is continuous in Q ,
we can identify it with a mapping ι(T) : x 7→ ι(T (ι−1(x))) on C which is continuous in
the subspace topology of C in R , as follows.

4.15 Theorem Let P be a program, let T be a consequence operator which is locally
finite and let ι be a homeomorphism from (IP,n,Q) to C . Then T (more precisely

23

ι(T)) can be uniformly approximated by input-output mappings of 3-layer feedforward
networks.

Proof: Under the conditions stated in the theorem, the operator T is continuous in Q .
Using the homeomorphism ι , the resulting function ι(T) is continuous on the Cantor
set C , which is a compact subset of R . Applying Theorem 2.4, ι(T) can be uniformly
approximated by input-output functions of 3-layer feedforward networks. �

The restriction to programs with continuous consequence operator is not entirely satis-
factory. There is another approximation theorem, due to [HSW89], which requires only
measurability of the functions in question.

4.16 Theorem Suppose that φ is a monotone increasing function from R onto (0, 1) .
Let f : Rr → R be a Borel-measurable function and let µ be a probability Borel-measure
on Rr . Then, given any ε > 0 , there exists a 3-layer feedforward network with squashing
function φ whose input-output function f̄ : Rr → R satisfies

%µ(f, f̄) = inf{δ > 0 : µ{x : |f(x)− f̄(x)| > δ} < δ} < ε.

In other words, the class of functions computed by 3-layer feedforward neural nets is dense
in the set of all Borel measurable functions f : Rr → R relative to the metric %µ defined
in Theorem 4.16.

By means of Theorem 4.10, we can now view a local consequence operator T as a mea-
surable function ι(T) on C by identifying IP,n with C via a homeomorphism ι . Since C
is measurable as a subset of the real line, this operator can be extended6 to a measurable
function on R and we obtain the following result.

4.17 Theorem Given any program P with local consequence operator T , the operator
T (more precisely ι(T)) can be approximated in the manner of Theorem 4.16 by input-
output mappings of 3-layer feedforward networks.

This result is somewhat unsatisfactory since the approximation stated in Theorem 4.16
is only almost everywhere, that is, pointwise with the exception of a set of measure zero.
The Cantor set is, however, a set of measure zero. We can strenghen the result a bit
by giving an explicit construction for the two-valued case. We define a sequence (Tn)
of measurable functions on R as follows, where l(x) = max{y ∈ C : y ≤ x} and
u(x) = min{y ∈ C : y ≥ x} for each x ∈ [0, 1] \ C :

6For example, as a function T : R → R with T (x) = ι(TP (ι−1(x))) if x ∈ C and T (x) = 0
otherwise.

24

T0(x) =

ι(TP)(x) if x ∈ C
ι(TP)(0) if x < 0

ι(TP)(1) if x > 1

0 otherwise

T1(x) =

{
ι(TP)(l(x)) + ι(TP)(u(x))−ι(TP)(l(x))

u(x)−l(x)
if x ∈ [3−1, 2 · 3−1]

0 otherwise

Ti(x) =

{
ι(TP)(l(x)) + ι(TP)(u(x))−ι(TP)(l(x))

u(x)−l(x)
(x− l(x)) if x ∈

⋃2·3i−2

k=1 [(2k − 1)3−i, 2k · 3−i]

0 otherwise

for i ≥ 2 .

We define the function T : R → R by T (x) = supi Ti(x) and obtain T (x) = ι(TP (x))
for all x ∈ C and T (ι(I)) = ι(TP (I)) for all I ∈ IP . Since all the functions Ti , for
i ≥ 1 , are piecewise linear and therefore measurable, the function T is also measurable.
Intuitively, T is obtained by a kind of linear interpolation.

If i : BP → N is a bijective mapping, then we can obtain a homeomorphism ι : IP → C
from i as follows: we identify I ∈ IP with x ∈ C where x written in ternary form has
2 as its i(A) th digit (after the decimal point) if A ∈ I , and 0 as its i(A) th digit if
A 6∈ I . If I ∈ IP is finite or cofinite7, then the sequence of digits of ι(I) in ternary
form is eventually constant 0 (if I finite) or eventually constant 2 (if I cofinite). Thus,
each such interpretation is the endpoint of a linear piece of one of the functions Ti , and
therefore of T .

4.18 Corollary Given any normal logic program P , its single-step operator TP (more
precisely ι(TP)) can be approximated by input-output mappings of 3-layer feedforward
networks in the following sense: for every ε > 0 and for every I ∈ IP which is either
finite or cofinite, there exist a 3-layer feedforward network with input-output function f
and x ∈ [0, 1] with |x− ι(I)| < ε such that |ι(TP (I))− f(x)| < ε .

Proof: We use a homeomorphism ι which is obtained from a bijective mapping i :
BP → N as in the paragraph preceeding the Corollary. We can assume that the measure
µ from Theorem 4.16 has the property that µ{[x, x+ ε]} ≤ ε for each x ∈ R . Let ε > 0
and I ∈ IP be finite or cofinite. Then by construction of T , there exists an interval
[ι(I), ι(I) + δ] with δ < ε

2
(or analogously [ι(I) − δ, ι(I)]) such that T is linear on

[ι(I), ι(I) + δ] and |T (ι(I)) − T (x)| < ε
2

for all x ∈ [ι(I), ι(I) + δ] . By Theorem 4.16
and the previous paragraph, there exists a 3-layer feedforward network with input-output
function f such that %µ(T, f) < δ , that is, µ{x : |T (x) − f(x)| > δ} < δ . By our
condition on µ , there is x ∈ [ι(I), ι(I)+δ] with |T (x)−f(x)| ≤ δ < ε

2
. We can conclude

that |ι(TP (I)) − f(x)| = |T (ι(I)) − f(x)| ≤ |T (ι(I)) − T (x)| + |T (x) − f(x)| < ε , as
required. �

7 I ∈ IP is cofinite if BP \ I is finite.

25

It would be of interest to strengthen this approximation for sets other than the finite and
cofinite elements of IP , although it is interesting to note that the finite interpretations
correspond to compact elements in the sense of domain theory, see [AJ94].

We want to return now to the case discussed earlier in Theorem 4.15. In Section 3, and
also in [HKS99], the following recurrent neural network architecture was considered: we
assume that the number of output and input units is equal and that, after each propagation
through the network, the output values are fed back without changes into input values.
For the case which we consider, it will again be sufficient to suppose that the input layer
consists of one unit only, so that the architecture can be depicted as in Figure 6.

We will show in the following that iterates of locally finite local consequence operators
can be approximated arbitrarily closely by iterates of suitably chosen networks. This is
in fact a consequence of the uniform approximation obtained from Theorem 2.4 and the
compactness of the unit interval.

Let P be a logic program, let T be a locally finite local consequence operator for P
and let ι : IP → C be a homeomorphism. Let F be a continuous extension of ι(T) onto
the unit interval [0, 1] in the reals, let d be the natural metric on R , and let ε > 0 .
By Theorem 4.15, there exists a 3-layer feedforward network with input-output mapping
f such that maxx∈[0,1] d(f(x), F (x)) < ε . Since [0, 1] is compact and F is continuous,
we obtain that F is Lipschitz-continuous, that is, there exists λ ≥ 0 such that for all
x, y ∈ [0, 1] we have d(F (x), F (y)) ≤ λd(x, y) . For x, y ∈ [0, 1] we therefore obtain

d(f(x), F (y)) ≤ d(f(x), F (x)) + d(F (x), F (y)) ≤ ε + λd(x, y). (5)

Now let x ∈ [0, 1] be arbitrarily chosen. By Equation (5) we obtain

d(f 2(x), F 2(x)) ≤ ε + λd(f(x), F (x)) ≤ ε + λε. (6)

Inductively, we can prove that for all n ∈ N we have

d(fn(x), F n(x)) ≤ ε + λε + · · ·+ λn−1ε = ε

(
n−1∑
i=0

λi

)
= ε

1− λn

1− λ
. (7)

Thus, we obtain the following bound on the error produced by the recurrent network after
n iterations.

4.19 Theorem With the notation and hypotheses above, for any I ∈ IP and any n ∈ N
we have

|fn(ι(I))− ι(T n(I))| ≤ ε
1− λn

1− λ
.

Proof: Note that ι(T n(I)) = F n(ι(I)) , and the assertion follows from Equation (7) since
d is the natural metric on R . �

We derive a few corollaries from this result.

26

4.20 Corollary If F is a contraction on [0, 1] , so that λ < 1 , then
(
F k(ι(I))

)
con-

verges for every I to the unique fixed point x of F and there exists m ∈ N such that
for all n ≥ m we have

|fn(ι(I))− x| ≤ ε
1

1− λ
.

Proof: The convergence follows from the Banach contraction mapping theorem. The
inequality follows immediately from Theorem 4.19 using the well-known expression for
limits of geometric series. �

If F is a contraction on [0, 1] , then T is a contraction on the complete subspace C , and
also has a fixed point M with ι(M) = x . However, it seems difficult to guarantee the
hypothesis of Corollary 4.20, although in [HKS99] a similar result for acyclic programs
with injective level mappings in classical logic was achieved. The following result may be
more promising.

4.21 Corollary If, for some I ∈ IP , T n(I) converges in Q to a fixed point M of T ,
then, for every δ > 0 , there exists a network with input-output function f and some
n ∈ N such that |fn(ι(I))− ι(M)| < δ .

Proof: The hypothesis implies that F n(ι(I)) converges to ι(M) in the natural metric
on R . Given δ > 0 , there exists n ∈ N such that |Fm(ι(I))− ι(M)| < δ

2
for all m ≥ n .

Since F is fixed, we know the value of λ . Now, by the approximation results above,
we choose a network with input-output function f such that ε1−λn

1−λ
< δ

2
. Then using

Theorem 4.19 and the triangle inequality we obtain

|fn(ι(I))− ι(M)| ≤ |fn(ι(I))− F n(ι(I))|+ |F n(ι(I))− ι(M)|

< 2 · δ
2
≤ δ.

�

We close by describing a class of programs for which the additional hypothesis from
Corollary 4.21 is satisfied. The result is well-known for the case of classical two-valued
logic and the immediate consequence operator. So, let P be acyclic with level mapping l ,
and let T be a local consequence operator for P . We define a mapping d : IP × IP → R
by d(I, J) = 2−n , where n is least such that I and J differ on some atom A with
l(A) = n . It is easily verified that d is a complete metric on IP , see [Fit94].

4.22 Proposition With the stated hypotheses, T is a contraction with respect to d .

Proof: Suppose d(I, J) = 2−n . Then I and J coincide on all atoms of level less than
n . Now let A ∈ BP with l(A) = n . Then by acyclicity of P we have that all atoms in
BA are of level less than n , and by locality of T we have that T (I)(A) = T (J)(A) . So
d(T (I), T (J)) ≤ 2−(n+1) . �

We obtain finally the following theorem.

27

4.23 Theorem Let P be an acyclic program and let T be a local consequence operator
for P . Then, for any I ∈ IP , we have that T n(I) converges in Q to the unique fixed
point M of T .

Proof: By Proposition 4.22 and the fact that d is a complete metric, we can apply
the Banach contraction mapping theorem to obtain the convergence of T n(I) in d to
a unique fixed point M of T . By definition of d , the convergence of the sequence of
interpretations T n(I) to M must be pointwise, hence is also convergence in Q . �

Theorem 4.23 is remarkable since the existence of a fixed point of the semantic operator
can be guaranteed without any particular knowledge about the underlying multi-valued
logic.

5 Conclusions and Further Work

In considering the integration of Logic and Connectionist Systems, we have taken the
natural point of contact between them provided by the immediate consequence operator
TP , associated with a normal logic program P , and the issue of its computation by
means of neural networks. In so far as one may identify two logic programs with the
same immediate consequence operator (subsumption equivalence), this provides a sort
of semantics for a neural network which computes TP , namely, the supported model
semantics of P .

A number of questions arise out of these considerations, and we close by briefly mentioning
a few of them, as follows. First, there is the question of giving explicit constructions of
networks for approximating TP in case that TP is continuous, and this point is considered
in [BH03]. A question which is also related to the results given in [BH03] is that of
providing good bounds on Lipschitz constants for fP , and this issue appears to be central
to actually giving constructions of approximating networks. Another natural question
concerns carrying over the programme given here for the supported model semantics
of a normal logic program to the stable model semantics [GL88] and the well-founded
semantics [vGRS91], and one possible means of doing this is provided by the results
of [Wen02]. From the connectionist point of view, the main open question is how to
build a connectionist network given a first-order logic program. Ideally, assuming that
this is done, we would then like to apply known connectionist learning techniques, in
particular backpropagation, to such networks and, after training, extract a refined set of
first-order clauses from the network. Finally, there is the purely mathematical question
of what mathematical notions of approximation are useful and appropriate. Here we have
discussed two well-known ones: uniform approximation on compacta, and a notion of
approximation closely related to convergence in measure. However, others may prove to
be significant, and this is a problem still to be investigated.

28

References

[ADT95] Robert Andrews, Joachim Diederich, and Alan B. Tickle. A survey and cri-
tique of techniques for extracting rules from trained artificial neural networks.
Knowledge–Based Systems, 8(6), 1995.

[AJ94] Samson Abramsky and Achim Jung. Domain theory. In Samson Abram-
sky, Dov Gabbay, and Thomas S.E. Maibaum, editors, Handbook of Logic in
Computer Science, volume 3. Clarendon, Oxford, 1994.

[AP93] Krzysztof R. Apt and Dino Pedreschi. Reasoning about termination of pure
Prolog programs. Information and Computation, 106:109–157, 1993.

[Bar66] Robert G. Bartle. The Elements of Integration. John Wiley & Sons, New
York, 1966.

[Bez89] Marc Bezem. Characterizing termination of logic programs with level map-
pings. In Ewing L. Lusk and Ross A. Overbeek, editors, Proceedings of the
North American Conference on Logic Programming, pages 69–80. MIT Press,
Cambridge, MA, 1989.

[BH03] Sebastian Bader and Pascal Hitzler. Logic programs, iterated function sys-
tems, and recurrent radial basis function networks. Technical Report WV–03–
11, Knowledge Representation and Reasoning Group, Artificial Intelligence
Institute, Department of Computer Science, Dresden University of Technol-
ogy, Dresden, Germany, 2003. To appear in this volume.

[BS89] Aida Batarekh and V.S. Subrahmanian. Topological model set deformations
in logic programming. Fundamenta Informaticae, 12:357–400, 1989.

[Cav91] Lawrence Cavedon. Acyclic programs and the completeness of SLDNF-
resolution. Theoretical Computer Science, 86:81–92, 1991.

[Cla78] Keith L. Clark. Negation as failure. In Hervé Gallaire and Jack Minker,
editors, Logic and Data Bases, pages 293–322. Plenum Press, New York, 1978.

[DG84] William F. Dowling and Jean H. Gallier. Linear-time algorithms for test-
ing the satisfiability of propositional Horn formulae. The Journal of Logic
Programming, 1(3):267–284, 1984.

[dGBG01] Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay. Symbolic knowl-
edge extraction from trained neural networks: A sound approach. Artificial
Intelligence, 125:155–207, 2001.

[dGBG02] Artur S. d’Avila Garcez, Krysia B. Broda, and Dov M. Gabbay. Neural-
Symbolic Learning Systems — Foundations and Applications. Perspectives in
Neural Computing. Springer, Berlin, 2002.

29

[dGLG02] Artur S. d’Avila Garcez, Lúıs C. Lamb, and Dov M. Gabbay. A connec-
tionist inductive learning system for modal logic programming. In Proceed-
ings of the IEEE International Conference on Neural Information Processing
ICONIP’02, Singapore, 2002.

[dGZ99] Artur S. d’Avila Garcez and Gerson Zaverucha. The connectionist inductive
learning and logic programming system. Applied Intelligence, Special Issue
on Neural networks and Structured Knowledge, 11(1):59–77, 1999.

[dGZdC97] Artur S. d’Avila Garcez, Gerson Zaverucha, and Luis A. V. de Carvalho. Logi-
cal inference and inductive learning in artificial neural networks. In Christoph
Hermann, Frank Reine, and Antje Strohmaier, editors, Knowledge Represen-
tation in Neural networks, pages 33–46. Logos Verlag, Berlin, 1997.

[DMT00] Marc Denecker, V. Wiktor Marek, and Miroslaw Truszczynski. Approximat-
ing operators, stable operators, well-founded fixpoints and applications in
non-monotonic reasoning. In Jack Minker, editor, Logic-based Artificial In-
telligence, chapter 6, pages 127–144. Kluwer Academic Publishers, Boston,
2000.

[Fit85] Melvin Fitting. A Kripke-Kleene semantics for general logic programs. The
Journal of Logic Programming, 2:295–312, 1985.

[Fit94] Melvin Fitting. Metric methods: Three examples and a theorem. The Journal
of Logic Programming, 21(3):113–127, 1994.

[Fit02] Melvin Fitting. Fixpoint semantics for logic programming — A survey. The-
oretical Computer Science, 278(1–2):25–51, 2002.

[FP88] Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive archi-
tecture: A critical analysis. In Steven Pinker and Jacques Mehler, editors,
Connections and Symbols, pages 3–71. MIT Press, 1988.

[Fun89] Ken-Ichi Funahashi. On the approximate realization of continuous mappings
by neural networks. Neural Networks, 2:183–192, 1989.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic
Programming. Proceedings of the 5th International Conference and Sympo-
sium on Logic Programming, pages 1070–1080. MIT Press, 1988.

[Hit01] Pascal Hitzler. Generalized Metrics and Topology in Logic Programming Se-
mantics. PhD thesis, Department of Mathematics, National University of
Ireland, University College Cork, 2001.

[HK94] Steffen Hölldobler and Yvonne Kalinke. Towards a massively parallel com-
putational model for logic programming. In Proceedings ECAI94 Workshop

30

on Combining Symbolic and Connectionist Processing, pages 68–77. ECCAI,
1994.

[HKP91] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of Neural
Computation. Addison-Wesley Publishing Company, 1991.

[HKS99] Steffen Hölldobler, Yvonne Kalinke, and Hans-Peter Störr. Approximating
the semantics of logic programs by recurrent neural networks. Applied Intel-
ligence, 11:45–58, 1999.

[HKW00] Steffen Hölldobler, Yvonne Kalinke, and Jörg Wunderlich. A recursive neural
network for reflexive reasoning. In Stefan Wermter and Ron Sun, editors, Hy-
brid Neural Symbolic Integration, number 1778 in Lecture Notes in Artificial
Intelligence, pages 46–62. Springer, 2000.

[Höl93] Steffen Hölldobler. Automated inferencing and connectionist models. Techni-
cal Report AIDA–93–06, Intellektik, Informatik, TH Darmstadt, 1993. (Post-
doctoral Thesis).

[HS99] Pascal Hitzler and Anthony K. Seda. Characterizations of classes of pro-
grams by three-valued operators. In Michael Gelfond, Nicola Leone, and
Gerald Pfeifer, editors, Logic Programming and Non-monotonic Reasoning,
Proceedings of the 5th International Conference on Logic Programming and
Non-Monotonic Reasoning, LPNMR’99, El Paso, Texas, USA, volume 1730
of Lecture Notes in Artificial Intelligence, pages 357–371. Springer, Berlin,
1999.

[HS00] Pascal Hitzler and Anthony K. Seda. A note on relationships between logic
programs and neural networks. In Paul Gibson and David Sinclair, editors,
Proceedings of the Fourth Irish Workshop on Formal Methods, IWFM’00,
Electronic Workshops in Computing (eWiC). British Computer Society, 2000.

[HS01a] Pascal Hitzler and Anthony K. Seda. A “converse” of the Banach contraction
mapping theorem. Journal of Electrical Engineering, 52(10/s):3–6, 2001. Pro-
ceedings of the 3rd Slovakian Student Conference in Applied Mathematics,
SCAM2001, Bratislava. Slovak Academy of Sciences.

[HS01b] Pascal Hitzler and Anthony K. Seda. Semantic operators and fixed-point the-
ory in logic programming. In Proceedings of the joint IIIS & IEEE meeting
of the 5th World Multiconference on Systemics, Cybernetics and Informatics,
SCI2001 and the 7th International Conference on Information Systems Anal-
ysis and Synthesis, ISAS2001, Orlando, Florida, USA. International Institute
of Informatics and Systemics: IIIS, 2001.

[HS03a] Pascal Hitzler and Anthony K. Seda. Continuity of semantic operators in
logic programming and their approximation by artificial neural networks. In
Andreas Günter, Rudolf Krause, and Bernd Neumann, editors, Proceedings of

31

the 26th German Conference on Artificial Intelligence, KI2003, volume 2821
of Lecture Notes in Artificial Intelligence, pages 105–119. Springer, 2003.

[HS03b] Pascal Hitzler and Anthony K. Seda. Generalized metrics and uniquely de-
termined logic programs. Theoretical Computer Science, 305(1–3):187–219,
2003.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feed-
forward networks are universal approximators. Neural Networks, 2:359–366,
1989.

[JL77] Neil D. Jones and William T. Laaser. Complete problems for deterministic
sequential time. Theoretical Computer Science, 3:105–117, 1977.

[KR90] Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for shared-
memory machines. In J. van Leeuwen, editor, Handbook of Theoretical Com-
puter Science, chapter 17, pages 869–941. Elsevier Science Publishers B.V.,
New York, 1990.

[Llo88] John W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1988.

[McC88] John McCarthy. Epistomological challenges for connectionism. Behavioral
and Brain Sciences, 11:44, 1988. (Commentary on [Smo88]).

[McI00] Yvonne McIntyre. Modellgenerierung mit konnektionistischen Systemen. PhD
thesis, TU Dresden, Fakultät Informatik, 2000.

[MP72] Marvin L. Minsky and Seymour Papert. Perceptrons. MIT Press, 1972.

[New80] Allen Newell. Physical symbol systems. Cognitive Science, 4:135–183, 1980.

[Pla91] Tony A. Plate. Holographic reduced representations. In Proceedings of the
International Joint Conference on Artificial Intelligence, pages 30–35, 1991.

[Pol88] Jordan B. Pollack. Recursive auto-associative memory: Devising composi-
tional distributed representations. In Proceedings of the 10th Annual Confer-
ence of the Cognitive Science Society, pages 33–39, 1988.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
internal representations by error propagation. In Parallel Distributed Process-
ing. MIT Press, 1986.

[Ros62] Frank Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory
of Brain Machines. Spartan Books, Washington, 1962.

[SA93] Lokendra Shastri and Venkat Ajjanagadde. From associations to system-
atic reasoning: A connectionist representation of rules, variables and dy-
namic bindings using temporal synchrony. Behavioral and Brain Sciences,
16(3):417–494, September 1993.

32

[Scu90] Maria G. Scutellà. A note on Dowling and Gallier’s top-down algorithm for
propositional Horn satisfiability. The Journal of Logic Programming, 8:265–
273, 1990.

[Sed95] Anthony K. Seda. Topology and the semantics of logic programs. Fundamenta
Informaticae, 24(4):359–386, 1995.

[Smo88] Paul Smolensky. On the proper treatment of connectionism. Behavioral and
Brain Sciences, 11:1–74, 1988.

[TS94] Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based artificial neural
networks. Artificial Intelligence, 70(1–2):119–165, 1994.

[vGRS91] Allen van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded
semantics for general logic programs. Journal of the ACM, 38(3):620–650,
1991.

[Wen02] Matthias Wendt. Unfolding the well-founded semantics. Journal of Electrical
Engineering, Slovak Academy of Sciences, 53(12/s):56–59, 2002. (Proceedings
of the 4th Slovakian Student Conference in Applied Mathematics, Bratislava,
April 2002).

[Wil70] Stephen Willard. General Topology. Addison-Wesley, Reading, MA, 1970.

33

	Logic Programs and Connectionist Networks
	Repository Citation

	tmp.1407856361.pdf.1c3yX

