225 research outputs found

    A gradient model of vegetation and climate utilizing NOAA satellite imagery. Phase 1: Texas transect

    Get PDF
    A climatological model/variable termed the sponge (a measure of moisture availability based on daily temperature maxima and minima, and precipitation) was tested for potential biogeograhic, ecological, and agro-climatological applications. Results, depicted in tabular and graphic form, suggest that, as generalized climatic index, sponge is particularly appropriate for large-area and global vegetation monitoring. The feasibility of utilizing NOAA/AVHRR data for vegetation classification was investigated and a vegetation gradient model that utilizes sponge and AVHRR data was initiated. Along an east-west Texas gradient, vegetation, sponge, and AVHRR pixel data (channels 1 and 2) were obtained for 12 locations. The normalized difference values for the AVHRR data when plotted against vegetation characteristics (biomass, net productivity, leaf area) and sponge values along the Texas gradient suggest that a multivariate gradient model incorporating AVHRR and sponge data may indeed be useful in global vegetation stratification and monitoring

    Bulk Negative Index Photonic Metamaterials for Direct Laser Writing

    Full text link
    We show the designs of one- and two-dimensional photonic negative index metamaterials around telecom wavelengths. Designed bulk structures are inherently connected, which render their fabrication feasible by direct laser writing and chemical vapor deposition.Comment: 12 pages, 4 figures, submitted to Opt. Let

    Sequence length for repeated screening tests

    Full text link
    The cost of detecting asymptomatic colonic cancer with a sequence of occult blood tests by the guaiac method is investigated to determine the effect of sequence length. The results are sensitive to the definition of a screen positive and a variety of definitions of a positive screen are investigated. It is found that additional tests, when practical, can be used effectively to reduce the average cost of detection per case and to decrease markedly the probability of a false positive screen without sacrificing high sensitivity even when the prevalence of disease is low. The results hold for a variety of combinations of test and prevalence parameters. This strengthens the conclusion and makes the results more generally applicable.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22753/1/0000308.pd

    Towards high performance computing for molecular structure prediction using IBM Cell Broadband Engine - an implementation perspective

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA structure prediction problem is a computationally complex task, especially with pseudo-knots. The problem is well-studied in existing literature and predominantly uses highly coupled Dynamic Programming (DP) solutions. The problem scale and complexity become embarrassingly humungous to handle as sequence size increases. This makes the case for parallelization. Parallelization can be achieved by way of networked platforms (clusters, grids, etc) as well as using modern day multi-core chips.</p> <p>Methods</p> <p>In this paper, we exploit the parallelism capabilities of the IBM Cell Broadband Engine to parallelize an existing Dynamic Programming (DP) algorithm for RNA secondary structure prediction. We design three different implementation strategies that exploit the inherent data, code and/or hybrid parallelism, referred to as C-Par, D-Par and H-Par, and analyze their performances. Our approach attempts to introduce parallelism in critical sections of the algorithm. We ran our experiments on SONY Play Station 3 (PS3), which is based on the IBM Cell chip.</p> <p>Results</p> <p>Our results suggest that introducing parallelism in DP algorithm allows it to easily handle longer sequences which otherwise would consume a large amount of time in single core computers. The results further demonstrate the speed-up gain achieved in exploiting the inherent parallelism in the problem and also elicits the advantages of using multi-core platforms towards designing more sophisticated methodologies for handling a fairly long sequence of RNA.</p> <p>Conclusion</p> <p>The speed-up performance reported here is promising, especially when sequence length is long. To the best of our literature survey, the work reported in this paper is probably the first-of-its-kind to utilize the IBM Cell Broadband Engine (a heterogeneous multi-core chip) to implement a DP. The results also encourage using multi-core platforms towards designing more sophisticated methodologies for handling a fairly long sequence of RNA to predict its secondary structure.</p

    Tidal modulation of Sr/Ca ratios in a Pacific reef coral

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 31 (2004): L16310, doi:10.1029/2004GL020600.The strontium-to-calcium ratio (Sr/Ca) of reef coral skeleton is an important tool for reconstructing past sea surface temperatures (SSTs). However, the accuracy of paleoSSTs derived from fossil coral Sr/Ca is challenged by evidence that physiological processes influence skeletal chemistry. Here we show that water level variations from tidal forcing are correlated with changes in coral Sr/Ca that cannot be accounted for by changes in SST. Ion microprobe measurements of Sr/Ca ratios in a Pacific Porites lutea reveal high-frequency variations at periods of ~6, ~10, and ~25 days. The relationship between Sr/Ca and temperature on these short timescales does not follow trends observed at longer periods, indicating that an additional forcing is required to explain our observations. We demonstrate that Sr/Ca is correlated with both tidal water level variations and SST, and that their contributions to the Sr/Ca content of the skeleton vary as a function of period. We propose that water level influences Sr/Ca indirectly via modulation of photosynthetically-active radiation (PAR) that drives large changes in zooxanthellate photosynthesis.This research was supported by WHOI Ocean Life Institute grant 25051316 to ALC; NSF grants EAR-9628749 and EAR-9904400 to the WHOI Northeast National Ion Microprobe Facility; DAMD 17-93-J-3052 supported ALC’s fieldwork on JA

    Past Achievements and Future Challenges in 3D Photonic Metamaterials

    Full text link
    Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallo-dielectric sub-wavelength building blocks that are densely packed into an effective material. This deceptively simple, yet powerful, truly revolutionary concept allows for achieving novel, unusual, and sometimes even unheard-of optical properties, such as magnetism at optical frequencies, negative refractive indices, large positive refractive indices, zero reflection via impedance matching, perfect absorption, giant circular dichroism, or enhanced nonlinear optical properties. Possible applications of metamaterials comprise ultrahigh-resolution imaging systems, compact polarization optics, and cloaking devices. This review describes the experimental progress recently made fabricating three-dimensional metamaterial structures and discusses some remaining future challenges

    Shape Changes of Pt Nanoparticles Induced by Deposition on Mesoporous Silica

    Get PDF
    Polyvinylpyrollidone (PVP)-capped platinum nanoparticles (NPs) are found to change shape from spherical to flat when deposited on mesoporous silica substrates (SBA-15). Transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and extended X-ray absorption fine structure (EXAFS) analyses are used in these studies. The SAXS results indicate that, after deposition, the 2 nm NPs have an average gyration radius 22% larger than in solution, while the EXAFS measurements indicate a decrease in first neighbor co-ordination number from 9.3 to 7.4. The deformation of these small capped NPs is attributed to interactions with the surface of the SBA-15 support, as evidenced by X-ray absorption near-edge structure (XANES).LNLS [D04B-XAFS1-7683]LNLSPIP (CONICET, Argentina)PIP (CONICET, Argentina) [112-200801-03079]ANPCYT [PICT-2008-00038]ANPCyTCNPq [PICT-2008-00038]CNPqOffice of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under the Department of Energy [DE-AC02-05CH11231]Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under the Department of Energ
    corecore