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I. OVERVIEW

Phase 1 of this investigation has several objectives: (1) to test a new
experimental climatological model/variable termed the sponge for potential
biogeographical, ecological, and climatological applications (the sponge

is a measure of moisture availability based on daily temperature maxima

and minima, and precipi’ation); (2) to investigate the feasibility of
utilizing NOAA/AVHRR meteorological satellite data for vegetation classi-
fication; and (3) to initiate a vegetation gradient model that utilizes
climatological (i.e., sponge), bifological, and NOAA data that is ultimately
applicable to global vegetation stratification and monitoring.

To accomplish the initial objective, mean monthly and annual sponge values
are calculated for 75 Texas locatfons for the "normal" period of 1941-70.
Similar values are also compu.ed for approximately 25 stations along an
east-west transect across Texas for 1979 and 1980. Results suggest that as
a generalized climatic index, sponge's simplicity and sensitivity make it
particularly appropriate for trans-regional biogeographic studfies.

The latter two objectives were approached by acquiring vegetation, clima-
tological (sponge), and AVHRR pixel data (channels 1 and 2) for 12 locations
aloi.g the east.west Texas gradient. The normalized difference (ND) values
for the AVHRR data when plotted against the vegetation characteristics (bfo-
mass, net productivity, leaf area) and the sponge values suggest that a
multivariate gradient model incorporating AVHRR and sponge data may indeed
be useful in global vegetation analysis.



II. THE SPONGE: A NEW Er'C-CLIMATOLOGICAL VARIABLE

The planetary distributio: f types of natural vegatation is largely a
function of climate, most espociglly of spatfal varfations in energy and
moisture budgets. As a ceneral rule, climate is recognized as the pre-
eminent control of natural vegeiration at subcontinental-to global-scales.
For small areas, geologic, pedologic and other local factors may dominate
for lony, even indefinite, pericds of time.

Natural scientists such as ecologists and biogeographers have attempted to
utilize climatic measures and indices in surveys, stratifications and
classifications of natural vegetatifon. Typically, it is assumed that most
major ecoregion and rative vegetation-region "boundaries" actually represent
climatic discontinuiti~. or "breaks". This assumption, while not entirely
valid, probzbly ic reasonably accurate.

A key problem for such scholars nas been the determination of a simple but
accurate climatic "index" (or indices) which would reflect the primary
spatial variations in moisture and energy balances and, hence, could be
applied to the classification of native vegetation. Climate itself, a
complexly synergistic synthesis of many variables, does not readily succumb
to quantitative classification. [For example, what is the "real" boundary
between a desert and a (semi-arid) steppe? In fact, of course, there is no
abrupt statistical 1imit but rather a gradual transition from one type into
another.)

Identifying and gquantifying climatic factors which explain the distribution
of natural vegetation is even more challenging. Temperature and precipitation
by themselves are poor descriptions of climate and, hence, explainers of
vegetation distributions (Mather and Yoshioka, 1968).

It is therefore essential to select and/or develop climatic indices which
influence vegetation growth and development. Most recent approaches to this
problem emphasize the importance of moisture availability (e.g., surpluses
versus ceficits) and, more specifically, evapotranspiration. Unfortunately,
evapotranspiration is measured at very few places, and even evaporation



itself 1s not widely monitored. Numerous models have been developed which
estimate evaporatioﬁ from measurements of air temperature, average wind
speed, and net radiation (Penman, 1948; Jensen et al, 1970), but their
usefulness 1s constrained by the sparcity of stations which record solar
radfation and wind speed.

Simpler evapotranspiration schemes which require only air temperature &nd
precipitation -- both commonly measured around the world -- have been de-
vised (e.g., Thornthwaite, 1948; Griffiths, 1964; Moe, 1965; Trenchard,
1976). Thornthwaite's classification made use of mean monthly temperature
and precipitation values to generate a moisture index. Because of its
relative simplicity and accuracy, Thornthwaite's approach has been widely
adopted (e.g., it is used to calculate the USDA's Crep Moisture Index).
However, its use of average monthly temperatures somewhat limits its
sensitivity to variations in continentality and altitude.

An alternate method of relating climate to vegetation is that of multi-
variate discriminant analysis of climatic variables to determine their
relative influence in a particular ecoregion (e.q., Biogeoclimatic Units
of Vancouver Island, Klinka and Nuszdorfer, 1979). While very accurate
for detailed, site-specific studies, the resulting multiple regression
equations tend to be {a) cumbersome and lengthy, and (b) less applicable
to regional and global-scale vegetation classifications.

Thus climatologists, geographers, and ecologists interested in iarge-area
comparisons have found themselves forced to choose between an approach
which stratifies climate somewhat too broadly (e.g., Thornthwaite's) and
another which "hides the forest in the trees", viz., too much emphasis

on detail (e.g., Klinka and Nuszdorfer).

Recently, Trenchard and Artley (1981) developed a new climatological/
meteorological variable whose simple form, minimal data requirements and
accuracy make it an ideal candidate for application to meso- and macro-
scale biogeographical, agroclimatological, and ecological investigations.



This hypothetical medium 1s termed the sponge (see Figure 1). Sponge's
rationale is summarized as follows (Trenchard and Artley):

We desired a simple mofsture variable with a sound
physical basis that used common meteorological variables,
was suitable over a broad range of climates, and appli-
cable to a single station. The result was named sponge.

Sponge is described as a simple medium with 8 inches
of water holding capacity which 1s inftialized half-full
of water on 1 January.* Each day, in accordance with
the hydrologic cycle, water is added to the medium from
precipitation and lost through evaporation. Precipitation
(both 11quid and frozen) is added at the full amount until
the layer is saturated. It is this sponge like behavior
which gives the variable 1ts name. Any additional pre-
cipitation 1s assumed to be lost as run-off or drainage.
Evaporation occurs at a fraction of the Class A Pan rate,
the exact proportion being the ratfo of the current
contents to the <otal capacity of the sponge. Either
actual or estimated evaporation pan values may be used.
The daily contents of the sponge are defined as:

S; =S

i + Py - (E, *S, ) /CAP)

i-1

Where:

S1 = Sponge contents on day 1, in inches.

P1 = Precipitation on day i, in inches.

E = Actual or estimated pan evaporation in inches on day f{.
CAP = Sponge capacity in inches
and 0 £ S, < CAP

When evaporation pan measurements are not available, they
may be estimated with a divisor of 30 days to convert the
evaporation function to a daily value.

j1 ¥ P1 - EP(TXi. TNi)*Si_]/CAP*3O

*Alternatively, the final value of the previous year may
be used as an initial value, and the capacity may be variad
for a particular region.
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Where:
EP = Pan evaporation function
Tx1 s Maximum tcmperature on day 1.

TN1 = Minimum temperature on day 1.

Because of its simple data requirements (dafly pre-
cipitation and evaporation estimated from maximum and
minimum temperatures), the sponge can be calculated at
any temperature precipitation observation station.

Long-term (1941-1970) sponge "normals" (average values) were recently csl-
culated for all first-order meteorological stations in the counterminous

USA (Trenchard, 1981). Some representative values are presented in Table 1.
It is interesting to note that mean annual sponge values were found to range
between Yuma, Arizona (0.20") and Mt. Washington, New Hampshire (8.00", or
absolute sponge capacity).

Sponge is concluded to present a meaningful measure of areal "environmental
moistness". As a generalized climatic index, sponge's simplicity and
sensitivity make it particularly appropriate for transregfonal biogeograph-
ical studies (e.g., a large-area vegetation classification).
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ITI. THE SPONGE VARIABLE AS APPLIED TO MOISTURE AND VEGETATION

GRADIENTS IN TEXAS

There exists in Texas the most pronounced continuous, non-orographic,
intrastate climatological gradient found anywhere in the United States.
At least four distinct, first-order climatic types occur within the state
(humid subtropical, tropical steppe, tropical desert, and mid-latitude
steppe), with many more important subtypes (e.g., subtropical subhumid).
In particular, there is an extraordinarily steep east-west moisture
gradient, ranging from very humid in southeastern Texas (mean annual
precipitation>50") to true desert in far western Texas (average yearly
precipitation < 8.0"). This gradient strongly influences ecological
patterns, and virtually controls the regional distribution of natural
vegetation.

Texas is, then, an excellent natural "laboratory" to test the responsive-
ness and usefulness of the sponge variable (e.g., with respect to the
classification of natural vegetation utilizing satellite data). With this
in mind, mean sponge values were calculated for various Texas locations in
order to address these questions:

1. Does use of the sponge portray the distribution of climates
(especially moisture regions) in Texas better than, say,
precipitation alone?

2. If sponge accurately reflects the climates of Texas, can these
values be meaningfully correlated with vegetation-index (“green-
ness") values as measured from space by NOAA meteorological
satellites (see the discussion of these indices later in this
report)?

3. If the answer to question (2) is affirmative, can a combination
of sponge and satellite-derived greenness indices be used to
classify the major natural vegetation regions/types of the
state? If so, it might well prove feasible to utilize this
methodoloqy for other large-area and even global-scale vegetation
surveys and classifications.



Climatic Strata And Gradients in Texas Using The Sponge: Long-Term "Normals".

In order to assess sponge's potentfal usefulness as a climatic index in Texas,
Tong-term annual and monthly sponge "normal" (1941-1970 mean) values were com-
puted for 75 locations widely distributed throughout the state (see Map 1).
Sponge values were obtained by utilizing (1) the formula presented in section
1 of this report, and (2) mean monthly temperature maxima and minima, and pre-
cipitation, as compiled by the U.S. National Weather Service (NOAA)*.

The results of these computations are illustrated in Maps 2-6, while Tables

AI (2) - (f) (pages 48-53) present average normal (1941-70) monthly and annual precip-
itation and sponge values for each of the 75 locations. They are largely
self-evident, but several of the more intriguing aspects should be briefly

addressed.

Mean annual sponge values are greatest in the southeast (e.g., 5.2" at
Beaumont) and decrease continuously to Tows in the westernmost quadrant
(0.49") at Presidio in the Chihuahuan Desert). This is virtually identical
to the pattern of average annual precipitation. However, sponge appears to
more accurately portray (1) seasonal moisture changes across the state, and
(2) the magnitude of differences in the relative moistness of the varous
parts of Texas than does either precipitation or potential evapotranspiration
(estimated by Thornthwaite's method; see Table 3).

With respect to season, Figures Al - A4 (pages 55-58) and Tables AI (a) - (f) and
AIl {(page 54) clearly indicate that, for vegetative activity, winter and spring
are the wet seasons in East Texas while summer and fall are the moist periods in
West Texas -- quite unlike the seasonal distribution of precipitation alone,
which is greatest in the summer throughout the state. (Thornthwaite's "Index

of Moisture” would also reveal this aspect but, because of its reliance on

mean monthly temperatures, with less spatial sensitivity than sponge; Carter

and Mather, 1966).

*Daily data were simulated from monthly mean temperature maxima minima, and
precipitation for each station for 1941-70 using a series of harmonic trans-
formations. For 1979 and 1980, actual daily data were used.



MAP 1. 8-INCH SPONGE NORMALS FOR TEXAS
(PERIOD 1941-70, EXCEPT AS NOTED IN TABLES Al (a) - ()
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MAP 2. NORMAL ANNUAL AVERAGE OF 8-INCH SPONGE - STATE OF TEXAS

(PERIOD 1941-70, EXCEPT AS NOTED IN TABLES Al (a) - (f))

ssecelocdoce

el

eshococsssofoccscoce

T

"60
28°
LEGEND
SPONGE NORMALS IN INCHES 26°
ISONORMS
m 1.2 NOTE:
T g MAPS 2 — 6 ARE BASED ON COMPUTER-GENERATED
----- : GRAY-SCALE PLOTS — VALUES SHOWN ARE
GENERALIZED (1° x 1° AVERAGES).

11



MAP 3. NORMAL JANUARY AVERAGE 8-INCH SPONGE - STATE OF TEXAS
(PERIOD 1941-70, EXCEPT AS NOTED IN TABLES AI (a) - (f))
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MAP 4. NORMAL AVERAGE APRIL 8-INCH SPONGE - STATE OF TEXAS
(PERIOD 1941-70, EXCEPT AS NOTED IN TABLES Al (a) - (f))
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MAP 5. NORMAL JULY AVERAGE 8-INCH SPONGE - STATE OF TEXAS
(PERIOD 1941-70, EXCEPT AS NOTED IN TABLES Al (a) - (f))
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MAP 6. NORMAL OCTOBER AVERAGE 8-INCH SPONGE - STATE OF TEXAS
(PERIOD 1941-70, EXCEPT AS NOTED IN TABLES Al (a) - (f))
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TABLE II. COMPARISON OF NORMAL AVERAGE SPONGE, POTENTIAL EVAPOTRANSPIRATIONI.
ACTUAL EVAPOTRANSPIRATIONI. AND PRECIPITATION AT FOUR TEXAS STATION?

Station
E1 Paso/La Tuna

E1 Paso/La Tuna

El Paso/La Tuna

E1 Paso/La Tuna

E1 Paso/La Tuna
McCaney

McCamey

McCamey

McCamey

McCamey

Temple

Temple

Tenple

Temple

Temple

Port Arthur/Beaumont
Port Arthur/Beaumont
‘Port Arthur/Beaumont
Port Arthur/Beaumont

Port Arthur/Beaumont

1

Perio? Precipitation Evapo:ﬁ::;::ltion Eup:::::s‘ni ration
Annual 8.06 38.40 8.72
January 0.4 0.4/ 0.44
Mpril 0.15 2.72 3.32
July 1.61 6.96 1.76
October 0.70 2.60 0.84
Aanual 12.75 42.72 14.28
January 0.64 0.32 0.32
pril 0.77 3.24 0.88
July 1.64 7.48 1.60
October 1.3 3.04 1.20
Annual 33.87 41.20 33.68
January 2.35 0.44 0.44
April 3.67 2.92 2.92
July 1.96 7.40 5.20
October 2.73 2.92 2.92
Annual 54.77 43.44 42.44
January 4.57 0.76 0.76
April 4.43 3.12 3.1
July 5.1 7.20 7.08
October 3.19 3.40 3.36

P. E. and A. E. values extracted from: Ak
Part V1I, United States, 1964, C. W. Thornthwaite Assoc Lacoratory of Climatology, Pul. i

(lim, Vo1, 17, Wo.3, Centerton, N. J.

ZA11 velues in inches.
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.98
.61
.99
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0
0
0
0
0.94
0
0
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.08
.5C

w

.93
.24
.20
7.00

"~

W N

5.33
4.30
3.85
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Regarding differences in the absolute magnitude of available moisture from
place to place (i.e., how much wetter s site “x" than site "Y*?), sponge
also proves highly effective. For example, note that Beaumont's mean pre-
cipitation is 6.4 times that of Presidio annually and, in April, Beaumont's
average rainfall is 21 times that of Presidio. Sponge shows that the
moisture gradient between these locations {s actually much steeper: Beau-
mont's mean annual sponge value is 10.5 times greater than that of Presidio
and, in April, Presidio's average sponge value of 0.15" is only 3% of
Beaumont (5.33"), a difference of 35.5X. In other words, West Texas fis
nearly twice as dry -- compared with the humid eastern part of the state --
as precipitation averages alone would suggest. Considering that moisture
availability is the primary limiting factor with respect to ecoregions and
natural vegetation communities in Texas, it may be concluded that the sponge
variable is an cffective tool for analyzing climate-vegetation relationships.

Recent Sponge Conditions in (exas: 1979 and 1980. Mean monthly and annual
sponge values for the 75 test stations, as well as an additional number of
locations along the "Texas Transect" (see next sectfon) were calculated for
1979 and 1980 to assess sponge's responsiveness to inter-annual moisture
variability. (Only brierly examined here, these variations, and their

associations with satellite-measured vegetative index values, will be more
intensively studied in a later phase of this research effort.) Refer to

Tables Al and AIl and Figures Al - A4 (pages 48-58).

It is evident that 1979 was wetter than normal in East Texas {e.g., 1979
Yép at Liberty = 5.31" compared with normal annual Yép of 4.41"), while it
was dry in central Texas (e.g., at Brady, in 1979 igp = 2.09";

Yspnormal = 1.96") and near-normal in West Texas (e.g., at Salmorhea,
1979, xSp = 0.87"; xspnormal = 0.81").

17



Intrastate moisture conditions in 1980 were quite different than those of
1979. East Texas was unusually dry tn 1980: For example, Huntsviile's mean
annual sponge was 2.67", only 61% of the long-term normal value. The differ-
ence was especially pronounced in mid-summer, when this area experienced
drought conditfoiis (see Figure A3, page 57).

By contrast, 1980 was a relatively moist year in West Texas: Pecos and
Balmorhea, for instance, had annual sponge values nearly 100% above their
30-year normals (see Table AII, page 54).

Preliminary Assessment of Sponge

Based on these early results, it may be concluded that the sponge is a
useful new climatic variable for purposes of identifying and interpreting
trans-regional moisture (and, therefore, ecological) gradients and strata.
In fact, it may well prove to be, on baliice, the best such measure vet
devised for practical large-area analysis. Accordingly, sponge is utilized
in the following sections of this report as a generalized climatic index,
one which is correlated with vegetative indices derived from NOAA meteoro-
logical satellite imagery, as part of a gradient study of natural vegetation
along a hypothetical east-west "Taxas Transect".

18



IV. THE VEGETATION GRADIENT UTILIZING NOAA SATELLITE IMAGERY

Historically, two broadly conceived research methods have evolved to allow
stratification and abstraction of plant communities, classification and
gradient analysis (Kessell 1979). Classification involves grouping samples
together on the basis of shared characteristics into an abstract class of
plant communities. Such a grouping of communities by any definition of
shared characteristics is referred to as a community-type (Whittaker, 1975).
The secona m~thod, gradient analysis, deals not with discontinuous classes
but with continuity and gradient relationships. When the arrangement is
along a predetermined environmental gradient, {.e. moisture, the method is
termed direct gradient analysis. Indirect gradient analysis {s the arrange-
ment of samples along abstract axes that may or may not correspond to envir-
onmental gradients. The process of arranging samples along one or more
environmental gradients is called ordination (Goodall, 1954 cited in Kessell,
1979). Since vegetation varies continuously along a moisture gradient, samples
can indeed be ordinated.

Frequently, the development of a useful classification system requires the
use of ordination methods. Discontinuities in the natural vegetation are
sought for the purpose of determining the boundaries of the community types
recognized. These are often best determined objectively by employing the
methods of gradient analysis and ordination. The development of a Montana
habitat-type system (Phister et al., 1977, cited in Kessell, 1979) is a good
example of the successful use of ordination in developing a classification
system.

Gradient modeling has been the first extensive application of gradient
analysis to the needs of resour-e management informatfon systems (Kessell,
1979). Gradient modeling involves t= linkage of a multidimensional gradient
analysis with a remote site-specifi: ‘aventory and appropriate computer soft-
ware. Once the gradient model is complete, it can provide quantitative com-
munity inferences (i.e., biomass, cover) 1f the location of each site within
the gradient matrix is known (geographic coordinates, elevation, aspect, etc.).

19



The 1nitial step 1s to obtain information about the vegetation. Data on

the vegetation can be obtained by field samples (“ground truth” studies)

and remote methods (aerial photography and satellite imagery). Most systems
use both, Detailed ground truth data are used to derive community-types,
whereas aerial photographs and imagery are generally used to infer the
vegetation of unsampled areas.

To date, a considerable number of vegetation investigations have been carried
out using Landsat MSS imagery but very little has been attempted with the
meteorological satellite systems, particularly the NOAA/AVHRR, Gray and
McCrary (1980, cited in Gray and McCrary, 1981) obtained a high correlation
for detection of vegetation greenness between the NOAA-6 AVHRR Large Area
Coverage (LAC) data sets and Landsat MSS data within identical targat areas.
This finding led Gray and McCrary (1981) to suggest the NOAA satellite systems
should be used for monitoring global vegetation. One major advantage of NOAA
over Landsat is the tremendous increase in frequency of data collection. Gray
and McCrary (1981) anticipated that variations in the AVHRR responses will
provide information about reactions of vegetation to moisture avaflability

and thermal effects. They have demonstrated this for croplands in southern
Texas before and after Hurricane Allen in April 1980. Since v_getation,
particularly in regions arid and semi-arid s very responsive to moisture
patterns, it is well worthwhile to investigate temporal changes in natural
vegetation and how closely these relate to shifts in the AVHRP vegetation
index.

Quite 1ikely, we shall ultimately d-scover that the success of stratifying
different vegetation types from AVHRk vegetation indiLes will depend not on
spatial distinctions but on temporal distinctions, i.e., the rate and mag-
nitude of the spectral shift during a single season. Eventually, vegetation
indfces can be ordinated (indirect gradient analysis) and correlated to

ground truth vegetation and climatological gralients (direct gradient analysis).
The ultimate gradient model, incorporating both field and satellite data, may
permit vegetation classification and monitoring of changes with minimal ground
truthing.
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Data Acquisition and Processing

The vegetation gradient model initially necessitated establishing a sample
serfes along an environmental gradient. At NASA/JSC, we were geographically
sitting at the eastern edge of perhaps one of the best natural east-west
gradients in North America: Trans-Texas, along approximately 30 (°N)
latitude. As one moves from Beaumont to E1 Paso, Texas, one passes through
four major natural vegetation regions: (a) mixed pine-hardwood forest,

(b) savannah, (c) shrubland, and (d) desert/desert scrub (Map 7). Pre-
cipitation exhibits a continuum that has an annual mean > 50" (east Texas)
to ¢8" (west Texas). The elevation is 0.0' at the Gulf, 5000' just east

of E1 Paso. It would be difficult to identify a better east-west continuum
anywhere that changes gradually, yet dramatically and without any obvious
disjunctures over a distance of approximately 750 miles. While the soil
and geology definitely change across Texas, we do not intend to include a
discussion of those variables at this time.

Our main objective has been to design a model that may ultimately allow
vegetation classification on a global scale utilizing satellite imagery.

We initially expected to use Landsat data. By a stroke of good fortune,

we discovered that NOAA/AVHRR "Metsat" data was not only being archived
locally by NOAA personnel (T. Gray, D. McCrary) in a readily useahle form
but it fit our specifications perfectly. The appropriate software had been
written by Lockheed, Inc., to be able to retrieve raw pixe! data for AVHRR -
channels 1 and 2 along specific scanlines or bands of scanlines across the
entire state of Texas. In addition, the software provided geographic
coordinates for each pixel. In order to obtain a specific scanline, it

was really only necessary to provide the specific coordinates at the be-
ginning and end of our trans-Texas transect. Since the NOAA - n series

of satellites orbit is near-polar, sun-synchronous, and twice daily, it
crosses a given longitude at an angle and at varying places. Consequently,
since scanlines are perpendicular to the orbit, it was impossible to select
scanlines that remained "isolatitude" or were exactly superimposed from one
date to the next. It is also important to remember that NOAA scenes cover
such an expanse that related angles to each pixel vary greatly. To permit
comparisons, the pixel radiance values have been normalized to an overhead
sun.
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MAP 7. 12 SAMPLE LOCATIONS ON TEXAS TRANSECT
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36° 36°
4° ® 96’ 04°
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32°,106° 104° 2°
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102° 94°
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MAJOR VEGETATION REGIONS * N 26°
98°

A - PINE/HARDWOOD FOREST

B - SAVANNAH

C - SHRUBLAND

D - DESERT/DESERT SCRUB

* MODIFIED FROM GOULD (1975)
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It has been our intention to acquire scanlines for four cloud-free days
during 1980 - one from each season. At this point we have only been able

to process 3 dates (April 19, July 10, October 9); winter has been excluded
for lack of data. We requested and rece{vod bands of 5 adjacent scanlines,
extending essentially from E1 Paso to Beaumont (Figure 2). At predetermined
locations which corresponded to our ground truth sites along the strip, we
sampled a 25 pixel grid (5 x 5), obtaining an average grid value of pixel
counts for each two channels. The selection of the 25 pixel sample grids

was somewhat difficult because it was not possible to accurately ground-
truth the transect line. The intention has been to select 12 sites, approx-
imately 3 sites in each of the four major vegetation regions bisected (Map 7).
Using Texas vegetation-type maps (Texas Parks and '/ildlife Department - based
on Landsat data), original Landsat MS5 scenes, aerial photos, Aeronautical
Navigation maps (1:1,000,000), and selected vegetation references (Gould,
1975; see Smeins, 1978), an effort was made to choose "homogeneous" natural
vegetation sites, devoid of water, urbanization, and cultivation. The site
locations were shifted slightly between sampling dates because the scanlines
could not be superimposed.

It was difficult deciding just how to initially treat the satellite data.
Gray and McCrary (1981) have devised their own vegetation index, that they
now rather appropriately call the Gray-McCrary Index (GMI). The GMI is
simply the difference between the solar-zenith corrected albedo value for
the two channels. At least initially, we are using the Landsat-derived
normalized difference (ND) equation of Rouse, et al. (1973) and Deering,

et al. (1975) where:

- Channel 2 - Channel 1
Channel 2 + Channel 1

ND
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Normalized difference values were obtained for each of the twelve (12)

sites on the three (3) dates. The next step was to decide how to best
statistically treat the ND values. At this stage we have simply been

able to do some preliminary analysis of variance. Normal{zed difference
values were plotted as a function of longitude, sponge and certain vegetation
characteristics (i.e., biomass, net productivity, leaf area).

Vegetation Regions on the Texas Transect

The Texas transect selected for our model essentially runs from Beaumont
(94°H) to E1 Paso (106°) and the 12 sample sites have been numbered east

to west (see Map 7). Since it was not feasible to visit the transect for
optimal site selection, it was necessary to utilize vegetation maps. At
this level of our investigation, the ground-truth precision was not terribly
critical since our initial concern has been tc get a general feeling for the
potential of NOAA imagery for global vegetation stratification.

Gould's (1975) vegetation map and discussion of the vegetation regions of
the state is large-scale but is the best complete map available. The

Texas Parks and Wildlife Department is in the process of completing a state-
wide series of land-use classification maps based on Landsat data. Utilizing
primarily those two sources, it appears as though our transect bisects four
major vegetation regions. Table III enumerates those four reyions from east
to west, their approximate longitudinal boundaries on the transect, and
document vegetation. For a more complete vegetation description, see Gould
(1975), Texas Parks and Wildlife vegetation-type maps, and Smeins (1978).
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Results and Discussion

1. Normalized difference (ND) as a function of longitude. As pre-

viously mentioned 1t was impossible to insure superimposition of pixel
sampling locations between dates because the satellite orbit fluctuates.
For example, while still in pine-hardwood forest, site 1 on April 19 is
not geographically identical to site 1 on October 9. The tabular and
graphic summaries when the three sample dates were individually plotted
as a function of longitude are presented below (Table IV, Figures 3, 4).

There is generally a high correlation between ND and longitude
(mean rz = ,756); ND decreases from east to west.

The sample size of 12 is not sufficiently large enough to merit serious
discussion as to significant differences among the three sampling periods.
Neither can we eliminate the real possibility of cloud cover affecting
reflectance values. We definitely know that there was some cloud cover

in West Texas on October 9. What the regressions do suggest is what one
would expect knowing the phenological nature of the vegetation regions on
the transect. April and July values are high in the mixed forest because
the deciduous trees have leafed out. By October, they have dropped their
leaves, reducing their "greenness". Progressing westward across the state,
a greater percentage of the perennials are non-deciduous but the vegetation
becomes less dense and more dependent on infrequent precipitation. In
addition, the amount of exposed ground in the desert scrub poses problems
of separating soil spectra from vegetation spectroreflectance (Miller,

Lee D., pers. comm,).

The variation between seasons appears to diminish going from east to west.
The mean regression for all three dates (Figure 4) indicates not only that
the greater between-date variation is in the pine-hardwood forest but also
that April, and to a lesser extent July are well above the line for the
three dates. We would have expected much higher values «:ring the annual
blooms in April in the Trans-Pecos but more extensive sampling may clarify
this.
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TABLE IV, INDIVIDUAL NORMALIZED DIFFERENCE (ND) VALUES, MEANS, REGRESSION
EQUATIONS, AND r2 FOR 3 DATES IN 1980 ALONG TEXAS TRANSECT.

Site April 19 July 10 October 9
1. .258 .238 .161
2. .289 ,229 171
3. .286 .231 .215
4, .259 .136 147
5. .224 206 .151
6. .126 137 .090
7. .138 125 .033
8. .062 .141 .101
9, .038 .159 112
10. .044 .029 .051
11. '046 .0% .044
12, .035 .001 .063
Combined
X .159 .128 .112 .130
Y 2.526 - .024x 2.268 - 022X 1.23 - 011X 2.00 - .019x
rl .752 .934 .636 .756
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2. Sponge index as a function of longitude. For a discussion of a
13w moisture variable, the sponge, we refer you to earlfer sections I[, III
of this report. Long-term annual “normals" (1941-70) were calculated for
26 stations along or near the Texas transect. These values were plotted
as a functfon of longitude (Figure 5). The results indicate an extremely
high correlation (r2 = .911) between sponge and longitude; sponge increases
(as does precipitation) from west to east.

3. Normalized difference (ND) as function of sponge. Since both the
vegetation index, ND, and sponge showed similar positive correlation with
geographic position on the transect, it seemed appropriate to interpolate
sponge values from the 26 stations (see Table A**, page 54; Maps 8,9)
along the transect for each of 36 ND values (3 values for each of the 12
sites). When ND was plotted against sponge, there was a good correlation
(r2 = _777) (Figure 6). Regressing the two regressions, (ND (Fiqure 4)
vs. Sponge (Figure 5), the result is a very pleasing (rz- 1.001) but transect-
limited, prediction model that permits estimating longitude, sponge index,
and ND value, requiring input of only one of the 3 varfables (Figure 7).
This model serves to illustrate the very high correlation between the
vegetation index anc the sponge. To further establish this correlation,
if one plots the highest ND value of the three dates at each 12 stations
against the long-term sponge value for that particular month, r2 = ,946.

4. Normalized difference (ND) as 2 function of vegetation. As earlier
mentioned, it was not feasible to actuaily ground truth the transect to
verify and quantify the vegetation. No doubt this should be done at some
later stage. In lieu of a better alternative, biomass, net productivity,
and leaf area estimates from Whittaker and Likens (1973) were used (see
Table V). Since the predominant vegetation 1imiting factor along the Texas
gradient is moisture, these vegetation parameters predictably decline from
east to west. It has been previously demonstrated that all of these para-
meters have been correlated with spectral data (see introduction to Tucker,

et al. 1981 for literature review). While general, when ND means for each
site are plotted against biomass, net productivity, and leuf area mean
values, the results are prophetic as to which vegetation characteristic has
the highest correlation with the satellite data (Table VI).
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TABLE V. MEAN VALUES FOR WORLD-WIDE ESTIMATES OF NET PRODUCTIVITY BIOMASS
AND LEAF AREA INDEX (WHITTAKER AND LIKENS, 1973)

NET PRODUCTIVITY BIOMASS LAY
gm/Mz /Yr Kg[Mz Mz [Mz
Temperate Evergreen/Deciduous 1250 32.5 8.5
Forest
Savannah 900 4.0 4.0
Shrubland 700 6.0 4.0
Desert/Desert 90 0.7 1.0
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NORMALIZED DIFFERENCE (ND)

15

10

l ] | i | 1

0 1 2 3 4
SPONGE INDEX (INCHES)

Figure 7.- Vegetation-Sponge prediction model - Texas transect.
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MAP 8. STATION LOCATIONS FOR SPONGE CALCULATIONS ALONG TEXAS TRANSECT

(PERIOD 1941-70 AND 1980, EXCEPT AS NOTED IN TABLES AI (a) - (f))
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MAP 9. MEAN 8-INCH SPONGE VALUES ALONG TEXAS TRANSECT 7
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The inference is that net productivity has the highest correlation to the
vegetation index, biomass the lowest. Several studies have recently shown

that currently used remote sensing techniques are not sensitive to non-green-
leaf components of the phytomass. However, there appears to be a high corre-
lation of spectral data with green-leaf area (biomass) and net production of
certain vegetation types (see Introduction, Tucker, et al. 1981). Our selection
of ND as a vegetation index was largely founded on Deering and Haas' (1977) high
correlation between Landsat-derived ND and rangeland biomass.

In Table V, it is noted that of the three parameters of vegetation, biomass

is the only one that doesn't consistently decline from east to west along the
transect. Shrubland, consisting largely of woody perennials, does not produce
the annual net production that a savannah, containing more herbaceous annuals
would, but its accumulative biomass would be greater. The ND does not re-
spond to the increase in biomass from savannah to shrubland because much of
that biomass is tied up in non-green components in shrubland which is not as
true in the savannah. Because net productivity and leaf area more closely re-
flect the actual spectral component of those vegetation regions on our transect,
we would anticipate their higher correlation with ND.

5. Vegetation-Sponge Index (VSI). Having previously established a high
correlation between ND and sponge, we would like to propose a new index that

represents the multiplicative of the two variables: the Vegetation - Sponge
Index (VSI).

ND X SPONGE = VSI

The mean VSI values for the 12 sample sites are presented below in tabular
and graphic form (Table VII, Figure 8).
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When VSI is plotted as a function of longitude, the separation of the four
major vegetation regions becomes much more apparent (Figure 8). It {s
ever possible to suggest boundaries for the four classes:

’ >1.0 pine-hardwood forest
0.4-1.0 savannah/cropland
.05-0.4 shrubland
< .05 desert/desert scrub

Using these suggested 1imits, it becomes readily apparent that the least
within-class variation occurs in desert and forest; the greatest variation
is in the shrubland and savannah/cropland classes. This seems consistent
with what we would expect. The desert and mixed forest would be more homo-
geneous in the sense that desert has extensive bare soil during much of the
year while the forest would have relatively little. The shrubland and
savannah would be considerably more heterogeneous.
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V. THE TEXAS MODEL: CONCLUSIONS AND PROJECTIONS

It has been demonstrated that the sponge variable is a supericr tool for
the analysis of climate/vegetation relationships. Furthermore, NOAA/AVHRR
satellite data proved useful for vegetation stratification. Finally, a
preliminary multivariate model of vegetation distribution, the VSI, was
developed based on an experimental east-west Texas gradient. The next
stage of this research effort will involve a more extensive analysis of
the application of the model to the Texas transect (e.g., increasing the
sample size), to be followed later by refinement of the model which will
then be tested against other natural vegetation regions across North
America. It is anticipated that ultimately such a model may be utilized
for global vegetation surveys, and as a means of remotely monftoring
vegetation region dynamics (e.g., desertification).
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TABLE AI(f).

hoa -

21931
3

1932
933
51933
61934
T1937
81937
1938

105939

Myg39 -

12

1940 -

V31940 -
Y1947 -

LT

169942

171943

PERIODS OF RECORD OTHER THAN 1941-1970:

1969
1970
1969
1967
1968
1969
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1967
1968
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1966
1969
1967
1968
1971
1970
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TABLE AII. PRECIPITATION AND 8-INCH SPONGE VALUES AT SELECTED STATIONS
ALONG AN EAST-WEST TEXAS TRANSECT: BEAUMONT (30.089N; 94.10%)

Sta. Lati- Longi- Year

Statin Mo Period tude (W) tud (W) m‘ﬁ'fmnss M Precipe. Sponge
Beaumont 0613 1941-70 30.08 94.10 4.57 5.7 54.77 5.20
Beaumont 0613 1940 30.08 94.10 5.84 5.04 0.95 ].34 57.59 4.72
Beaumont 0613 1979 30.08 94.10 7.91 7.43 15.50 3.93 79.56 5.55
Lufkin 4524 1941-70 31.23 94.75 4.29 6.3¢ 2.83 2.63 44.93 4.22
Liberty 5196 1941-70 30.05 94.82 4.1 6.21 4.65 3.49 49.61 4.4
Liberty 5196 1980 .05 94.82 0.40 3.99 0.36 2.65 56.77 4.84
Liberty 5196 1979 30.05 94,82 8.9 7.4 7.61 4.08 70.11 5.3
Huntsville 4382 1941-70 .72 95.57 3.80 6.25 3.28 3.10 45,95 4.39
Huntsville 4382 1980 30.72 95.57 0.94 2.61 0.05 0.78 28.30 2.67
Huntsville 4382 1979 30.72 95.57 7.65 7.64 5.90 3.20 64.07 5.1
Brenham 1048 1941-70 30.15 96.40 2.78 4.34 1.90 2.0 38.96 3.53
Temple 8910 1941-70 31.1n 97.35 2.35 4.08 1.96 ‘.97' 33.87 3.08
San Marcos 7983 1941-70 29.88 97.95 2.06 3.08 1.89 2.04 33.86 2.74
New Braunfels 0832 1941-70 30.10 98.42 2.12 3.23 1.98 1.79 34.39 2.86
Blanco 6276 1941-70 29.70 98.12 1.88 2.92 1.83 1.78 32.61 2.56
Llano 5272 1341-70 30.75 98.68 1.37 2.16 1.20 1.22 26.16 2.12
Brownwood - 1138 1941-70 31.72 98.98 1.72 2.R3 1.85 1.92 27.20 2.3
Kerrville 4782 1941-70 30.05 99.15 1.86 2.36 2.10 1.96 30.75 2.59
Brady 1017 1941-70 31.12 99.35 1.52 2.16 1.34 1.41 23.27 1.96
Brady 1017 1980 N2 99.35 1.18 2.42 0.00 0.44 28.21 2.1
Brady 1017 1379 31.12 99.35 1.14 2.98 1.96 1.33 23.47 .09
Sonora 8449 1941-.70 30.57 100.65 0.82 1.28 1.81 1.33 19.28 1.46
Colorado City 4974 1941-70 32.38 100.87 0.82 1.46 2.14 1.39 19.80 1.44
Nzona -6734 1941-70 30.72 101.20 0.81 1.21 1.30 1.19 17.59 1.36
Nzona 6734 1980 30.72 101.20 0.08 2.52 0.00 0.87 17.10 1.61
Bin Spring 0786 1941-70 32.25 101.45 ° 0.63 1.30 1.97 1.28 15.72 1.28
McCamey 5707 1941-70 3113 102.20 0.64 0.98 1.64 1.42 12.75 0.94
McCamey 5707 1979 31.13 102.20 0.08 0.67 1.01 0.58 o 0.57
Fort Stockton 3278 1941-70 30.87 102.92 0.83 0.98 1.44 0.95 12.23 0.86
Wink 9829 1941-70 31.78 103.20 Q.59 0.79 1.64 0.86 1.1 0.79
Pecos 6892 1941-70 31.42 103.50 0.33 0.57 1.35 ° 0.66 9.05 0.58
Pecos 6892 1980 31.42 103.507 0.04 1.46 0.09 1.44 15.78 1.12
Pecos 6892 1979 31.42 103.50 0.75 1.10 0.94 0.40 8.19 0.57
Balmorhea 0498 1941-70 30.98 103.75 0.64 0.€6 1.56 0.86 12.12 0.81
Balmorhea 0498 19830 30.98 103.75 0.26 1.27 0.00 0.14 18.15 1.45
Balmorhea 0498 1979 30.98 103.75 1.43 1.51 1.89 0.68 12.78 0.87
Van Hom 9211 1941-70 31.05 104.83 0.54 0.89 1.75 0.80 10.23 0.78
Salt Flat 75620 1941-70 31.78 104.90 0.30 0.65 1.48 0.74 8.51 0.66
Salt Flat 7920 1980 31.78 104.90 0.1 0.56 0.16 0.10 7.08 0.56
Salt Flat 7920 1979 31.78 104.90 3.88 5.08 2.65 0.79 9.47 0.65
Ysleta 9966 1941-70 31.70 106.32 0.40 0.56 1.64 0.86 1.1 0.49
Ysleta 9966 1930 n.70 106.32 0.96 1.38 0.00 0.03 9.30 0.38
Ysleta 9966 1979 31.70 106.32 0.80 0.51 1.37 0.49 8.17 0.52
La Tuna 4931 1941-70 31.97 106.60 0.4) 0.7 1.61 0.66 8.C< 0.59

TAH th"Ci1 litathcn and sponge values in inches. Data from Natfonal Climatic Center, NOAA,
ev .
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Texas Sponge Values: 1940
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Figure 42.- Texas sponge values for April 1980 compared to
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Texas Spomge Values:  July, I‘D:'Al'

TINT

T ._/9/—\:‘ \
—-17
forme 1 Texas Sponge Yalues: .lulv?
B -~
Y
|t
=/ gl
west =) \lﬁ/:;;- ul ’ Lt
HANAL
./"'\‘
]
«

'll.uc.od on 28 stations along -0 "Texas Transect® from Beawont Lo Lo fun ..
/l‘Ml-l‘)IO; % stations throughout Texas,
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Figure A3.- Texas sponge values for July 1980 compared to
normal Texas sponge values for July.
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Texas Sponge Values: October, |9uo'
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21941-1970; 75 stations throughout Texas.

Note: 257 Vertical Exaggeration on all plots.

Figure A4.- Texas sponge values for October 1980 compared
to normal Texas sponge values for October.
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