3 research outputs found

    Multiobjective evolutionary algorithms for multivariable PI controller design

    Full text link
    A multiobjective optimisation engineering design (MOED) methodology for PI controller tuning in multivariable processes is presented. The MOED procedure is a natural approach for facing multiobjective problems where several requirements and specifications need to be fulfilled. An algorithm based on the differential evolution technique and spherical pruning is used for this purpose. To evaluate the methodology, a multivariable control benchmark is used. The obtained results validate the MOED procedure as a practical and useful technique for parametric controller tuning in multivariable processes.This work was partially supported by the FPI-2010/19 grant and the project PAID-06-11 from the Universitat Politecnica de Valencia and the projects DPI2008-02133, TIN2011-28082 and ENE2011-25900 from the Spanish Ministry of Science and Innovation.Reynoso Meza, G.; Sanchís Saez, J.; Blasco Ferragud, FX.; Herrero Durá, JM. (2012). Multiobjective evolutionary algorithms for multivariable PI controller design. Expert Systems with Applications. 39(9):7895-7907. https://doi.org/10.1016/j.eswa.2012.01.111S7895790739

    Performance of the MAGIC stereo system obtained with Crab Nebula data

    Get PDF
    MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma. Since autumn 2009 both telescopes have been working together in stereoscopic mode, providing a significant improvement with respect to the previous single-telescope observations. We use observations of the Crab Nebula taken at low zenith angles to assess the performance of the MAGIC stereo system. The trigger threshold of the MAGIC telescopes is 50-60 GeV. Advanced stereo analysis techniques allow MAGIC to achieve a sensitivity as good as (0.76 +/- 0.03)% of the Crab Nebula flux in 50 h of observations above 290 GeV. The angular resolution at those energies is better than ~0.07 degree. We also perform a detailed study of possible systematic effects which may influence the analysis of the data taken with the MAGIC telescopes.Comment: 15 pages, 19 figures, 4 tables, added run-by-run systematics study, and the study of angular resolution as the function of the distance to the camera centre, accepted for publication in Astroparticle Physic
    corecore