29 research outputs found

    Dooks Fine Food Menus 2020

    Get PDF
    There are lots of Yotam wannabes who think a pomegranate seed and a squeeze of lime will cut it. Then there\u27s a band of Irish chefs who worked for Yotam Ottolenghi\u27s London restaurants and cafes and get that it\u27s all about the best ingredients worked until they produce the best flavours. Richard Gleeson came home to Fethard to open Dooks, a brilliant addition to this lovely Tipperary town.https://arrow.tudublin.ie/menus21c/1493/thumbnail.jp

    Shrinking land priority : Kenya’s implementation of conservation areas

    Get PDF
    1 online resource (61 p.) : colour mapIncludes abstract.Includes bibliographical references (p. 55-61).While the world witnesses the overall warming of the globe and environmental destruction, due to human activity, conservation areas have become a popular model for environmental preservation and regeneration. This thesis takes an in-depth look at the empirical case of Kenya and how the Government has implemented conservation areas as a model of environmental protection. The Kenyan Government has both made environmental conservation a priority as well as prioritized the participation of local communities, in these conservation areas. However, private land encroachment and human-animal conflict threaten the success of these conservation projects. In particular, the stagnation of nomadic pastoralist groups and the lack of prioritization of conserved land can be accused as successors to the aforementioned issues. This thesis attempts to address these issues and how they can be modified through governmental legislation

    Using Beatboxing for Creative Rehabilitation After Laryngectomy:Experiences From a Public Engagement Project

    Get PDF
    Laryngectomy is the surgical removal of the larynx (voice box), usually performed in patients with advanced stages of throat cancer. The psychosocial impact of losing the voice is significant, affecting a person’s professional and social life in a devastating way, and a proportion of this patient group subsequently must overcome depression (22–30%) and social isolation (40%). The profound changes to anatomical structures involved in voicing and articulation, as a result of surgery, radiotherapy or chemotherapy (separately or in combination with one another), introduce challenges faced in speech rehabilitation and voice production that complicate social reintegration and quality of life. After laryngectomy, breathing, voicing, articulation and tongue movement are major components in restoring communication. Regular exercise of the chest, neck and oropharyngeal muscles, in particular, is important in controlling these components and keeping the involved structures supple. It is, however, a difficult task for a speech therapist to keep the patient engaged and motivated to practice these exercises. We have adopted a multidisciplinary approach to explore the use of basic beatboxing techniques to create a wide variety of exercises that are seen as fun and interactive and that maximize the use of the structures important in alaryngeal phonation. We herein report on our empirical work in developing patients’ skills, particularly relating to voiced and unvoiced consonants to improve intelligibility. In collaboration with a professional beatboxing performer, we produced instructional online video materials to support patients working on their own and/or with support from speech therapists. Although the present paper is focused predominantly on introducing the structure of the conducted workshops, the rationale for their design and the final public engagement performance, we also include feedback from participants to commence the critical discourse about whether this type of activity could lead to systematic underlying research and robustly assessed interventions in the future. Based on this exploratory work, we conclude that the innovative approach that we employed was found to be engaging, useful, informative and motivating. We conclude by offering our views regarding the limitations of our work and the implications for future empirical research

    Study protocol for the translating research in elder care (TREC): building context – an organizational monitoring program in long-term care project (project one)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While there is a growing awareness of the importance of organizational context (or the work environment/setting) to successful knowledge translation, and successful knowledge translation to better patient, provider (staff), and system outcomes, little empirical evidence supports these assumptions. Further, little is known about the factors that enhance knowledge translation and better outcomes in residential long-term care facilities, where care has been shown to be suboptimal. The project described in this protocol is one of the two main projects of the larger five-year Translating Research in Elder Care (TREC) program.</p> <p>Aims</p> <p>The purpose of this project is to establish the magnitude of the effect of organizational context on knowledge translation, and subsequently on resident, staff (unregulated, regulated, and managerial) and system outcomes in long-term care facilities in the three Canadian Prairie Provinces (Alberta, Saskatchewan, Manitoba).</p> <p>Methods/Design</p> <p>This study protocol describes the details of a multi-level – including provinces, regions, facilities, units within facilities, and individuals who receive care (residents) or work (staff) in facilities – and longitudinal (five-year) research project. A stratified random sample of 36 residential long-term care facilities (30 urban and 6 rural) from the Canadian Prairie Provinces will comprise the sample. Caregivers and care managers within these facilities will be asked to complete the TREC survey – a suite of survey instruments designed to assess organizational context and related factors hypothesized to be important to successful knowledge translation and to achieving better resident, staff, and system outcomes. Facility and unit level data will be collected using standardized data collection forms, and resident outcomes using the Resident Assessment Instrument-Minimum Data Set version 2.0 instrument. A variety of analytic techniques will be employed including descriptive analyses, psychometric analyses, multi-level modeling, and mixed-method analyses.</p> <p>Discussion</p> <p>Three key challenging areas associated with conducting this project are discussed: sampling, participant recruitment, and sample retention; survey administration (with unregulated caregivers); and the provision of a stable set of study definitions to guide the project.</p

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The hypodermataceae of conifers /

    No full text
    No.

    How’S The Ghost?

    No full text
    Exhibition at Market Gallery, February 2009 and at an Tobar, Mull, March 2010 (with Chris Dooks)
    corecore