158 research outputs found

    DIRECT PRODUCTS AND THE INTERSECTION MAP OF CERTAIN CLASSES OF FINITE GROUPS

    Get PDF
    The main goal of this work is to examine classes of finite groups in which normality, permutability and Sylow-permutability are transitive relations. These classes of groups are called T , PT and PST , respectively. The main focus is on direct products of T , PT and PST groups and the behavior of a collection of cyclic normal, permutable and Sylow-permutable subgroups under the intersection map. In general, a direct product of finitely many groups from one of these classes does not belong to the same class, unless the orders of the direct factors are relatively prime. Examples suggest that for solvable groups it is not required to have relatively prime orders to stay in the class. In addition, the concept of normal, permutable and S-permutable cyclic sensitivity is tied with that of Tc, PTc and PSTc groups, in which cyclic subnormal subgroups are normal, permutable or Sylow-permutable. In the process another way of looking at the Dedekind, Iwasawa and nilpotent groups is provided as well as possible interplay between direct products and the intersection map is observed

    Spiral Antenna with Reconfigurable HIS using Liquid Crystals for Monopulse Radar Application

    Get PDF
    Combined meta-intersections between two algorithms SOM and k-means. This Excel file contains final 23 meta-intersections as described in Results section. Each intersection is in separate tab, which also contains gene-annotation enrichment analysis results. (XLSX 721 kb

    A Model of the Cellular Iron Homeostasis Network Using Semi-Formal Methods for Parameter Space Exploration

    Full text link
    This paper presents a novel framework for the modeling of biological networks. It makes use of recent tools analyzing the robust satisfaction of properties of (hybrid) dynamical systems. The main challenge of this approach as applied to biological systems is to get access to the relevant parameter sets despite gaps in the available knowledge. An initial estimate of useful parameters was sought by formalizing the known behavior of the biological network in the STL logic using the tool Breach. Then, once a set of parameter values consistent with known biological properties was found, we tried to locally expand it into the largest possible valid region. We applied this methodology in an effort to model and better understand the complex network regulating iron homeostasis in mammalian cells. This system plays an important role in many biological functions, including erythropoiesis, resistance against infections, and proliferation of cancer cells.Comment: In Proceedings HSB 2012, arXiv:1208.315

    Coalescent-based species delimitation in the sand lizards of the Liolaemus wiegmannii complex (Squamata: Liolaemidae)

    Get PDF
    Coalescent-based algorithms coupled with the access to genome-wide data have become powerful tools forassessing questions on recent or rapid diversification, as well as delineating species boundaries in the absence of reciprocal monophyly. In southern South America, the diversification of Liolaemus lizards during the Pleistocene is well documented and has been attributed to the climatic changes that characterized this recent period of time. Past climatic changes had harsh effects at extreme latitudes, including Patagonia, but habitat changes at intermediate latitudes of South America have also been recorded, including expansion of sand fields over northern Patagonia and Pampas). In this work, we apply a coalescent-based approach to study the diversification of the Liolaemus wiegmannii species complex, a morphologically conservative clade that inhabits sandy soils across northwest and south-central Argentina, and the south shores of Uruguay. Using four standard sequence markers (mitochondrial DNA and three nuclear loci) along with ddRADseq data we inferred species limits and a time calibrated species tree for the L. wiegmannii complex in order to evaluate the influence of Quaternary sand expansion/retraction cycles on diversification. We also evaluated the evolutionary independence of the recently described L. gardeli and inferred its phylogenetic position relative to L. wiegmannii. We find strong evidence for six allopatric candidate species within L. wiegmannii, which diversified during the Pleistocene. The Great Patagonian Glaciation (∌1 million years before present) likely split the species complex into two main groups: one composed of lineages associated with sub-Andean sedimentary formations, and the other mostly related to sand fields in the Pampas and northern Patagonia. We hypothesize that early speciation within L. wiegmannii was influenced by the expansion of sand dunes throughout central Argentina and Pampas. Finally, L. gardeli is supported as a distinct lineage nested within the L. wiegmannii complex.Fil: Villamil, JoaquĂ­n. Universidad de la RepĂșblica. Facultad de Ciencias; UruguayFil: Avila, Luciano Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Instituto PatagĂłnico para el Estudio de los Ecosistemas Continentales; ArgentinaFil: Morando, Mariana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico. Instituto PatagĂłnico para el Estudio de los Ecosistemas Continentales; ArgentinaFil: Sites, Jack W.. University Brigham Young; Estados UnidosFil: LeachĂ©, Adam D.. University of Washington; Estados UnidosFil: Maneyro, RaĂșl. Universidad de la RepĂșblica. Facultad de Ciencias; UruguayFil: Camargo Bentaberry, Arley. Universidad de la RepĂșblica; Urugua

    Terrestrial species adapted to sea dispersal: Differences in propagule dispersal of two Caribbean mangroves

    Full text link
    A central goal of comparative phylogeography is to understand how species‐specific traits interact with geomorphological history to govern the geographic distribution of genetic variation within species. One key biotic trait with an immense impact on the spatial patterns of intraspecific genetic differentiation is dispersal. Here, we quantify how species‐specific traits directly related to dispersal affect genetic variation in terrestrial organisms with adaptations for dispersal by sea, not land—the mangroves of the Caribbean. We investigate the phylogeography of white mangroves (Laguncularia racemosa, Combretaceae) and red mangroves (Rhizophora mangle, Rhizophoraceae) using chloroplast genomes and nuclear markers (thousands of RAD‐Seq loci) from individuals throughout the Caribbean. Both coastal tree species have viviparous propagules that can float in salt water for months, meaning they are capable of dispersing long distances. Spatially explicit tests of the role of ocean currents on patterning genetic diversity revealed that ocean currents act as a mechanism for facilitating dispersal, but other means of moving genetic material are also important. We measured pollen‐ vs. propagule‐mediated gene flow and discovered that in white mangroves, seeds were more important for promoting genetic connectivity between populations, but in red mangroves, the opposite was true: pollen contributed more. This result challenges our concept of the importance of both proximity to ocean currents for moving mangrove seeds and the extent of long‐distance pollen dispersal. This study also highlights the importance of spatially explicit quantification of both abiotic (ocean currents) and biotic (dispersal) factors contributing to gene flow to understand fully the phylogeographic histories of species.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146564/1/mec14894-sup-0003-FigS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146564/2/mec14894-sup-0001-FigS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146564/3/mec14894_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146564/4/mec14894.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146564/5/mec14894-sup-0002-FigS2.pd
    • 

    corecore