57 research outputs found

    Physiology of rodent olfactory bulb interneurons

    Get PDF
    The sense of olfaction is a central gateway of perceiving and evaluating an animal’s environment filled with volatile chemicals. It affects individual and social behavior in an evaluative way, i.e. by helping to find food sources, warning from dangers like toxins or predators or influencing mating choice. Already the first central station for vertebrate olfactory processing, the olfactory bulb (OB), is astonishingly complex. Its structure features several horizontal layers of signal transformation that includes a large variety of local interneurons (INs). Most of these cells are subject to adult neurogenesis, which rejuvenates and remodels the circuitry throughout life. One of those interneuron subtypes, the granule cell (GC), poses the most numerous cell type of the olfactory bulb. As the major synaptic connection of the bulb, linking different glomerular units, it participates in numerous reported tasks like odor discrimination or memory formation. Many of those capacities are attributable to the function of peculiar spines with long necks and enormous bulbar heads called gemmules. They accommodate pre- and postsynaptic specializations of the reciprocal synapse with mitral cells (MCs) that are topographically and functionally linked and feature many modes of signal integration and transmission. As of yet, the mechanistic underpinnings of activation and neurotransmitter release are not yet resolved in great detail. This gave rise to the first project of this thesis, which focusses on the detailed granule cell gemmule physiology during local glutamatergic activation. With the help of two-photon glutamate uncaging and concomitant calcium imaging, the spine could be selectively stimulated and its physiological dynamics tested. By the use of different pharmacological agents, we could verify the importance of voltage gated sodium channels (Nav) for local signal amplification and the involvement of NMDA and high voltage activated calcium channels (HVACCs) in the calcium elevation during local stimulation, which is important for γ-aminobutyric acid (GABA) release from the spine. The superthreshold depolarizing signal and strong calcium elevation during local input are exclusively restricted to the spine, which affirms the chemical and electrical isolation of gemmules from the rest of the cell. In this study we thereby confirmed the theoretical prediction of active computation within single spines in our system, emphasizing the functional importance of morphological compartmentalization for the cell’s physiology. The second largest population of interneurons in the olfactory bulb is located in the glomerular layer (GL) of the olfactory bulb and subsumes a plethora of different cell types, categorized in terms of molecular characteristics (mostly neurotransmitter), morphology and function. Among those, dopaminergic (DAergic) juxtaglomerular cells (JGCs) form a subpopulation, which the second part of this thesis is focused on. Innervated by the first or second synapse in the olfactory pathway, these cells exert strong influence in very early stages of olfactory signaling. The gating and transformation of inputs locally and very importantly also laterally over large distances originate from several factors. This cell grouping usually expresses two neurotransmitters at the same time, GABA and dopamine (DA), and encompass many different morphologies and synaptic arrangements with other cell types. Utilizing dopamine transporter (DAT) based staining methods in three animal populations differing in age and species, this study revealed a larger diversity of dopaminergic cell types in the glomerular layer. New ‘uniglomerular’ and a ‘clasping’ cell types were discriminated, showing distinct dendritic formations and glomerulus innervations, which was assessed with a new morphometric tool kit. The clasping cell type features dendritic specializations, densely clasping around single cell bodies. These morphological traits occur in higher abundance and complexity specifically among adult animals and could be structures of neurotransmitter output since they show strong calcium influx upon soma depolarization. Comparisons of the three animal populations showed age- and/or species-dependent changes in the subtype composition of dopaminergic JGCs. Concordant with recent research, the inclusion of age-dependent comparisons in bulbar studies turned out to be of great significance

    Physiology of rodent olfactory bulb interneurons

    Get PDF
    The sense of olfaction is a central gateway of perceiving and evaluating an animal’s environment filled with volatile chemicals. It affects individual and social behavior in an evaluative way, i.e. by helping to find food sources, warning from dangers like toxins or predators or influencing mating choice. Already the first central station for vertebrate olfactory processing, the olfactory bulb (OB), is astonishingly complex. Its structure features several horizontal layers of signal transformation that includes a large variety of local interneurons (INs). Most of these cells are subject to adult neurogenesis, which rejuvenates and remodels the circuitry throughout life. One of those interneuron subtypes, the granule cell (GC), poses the most numerous cell type of the olfactory bulb. As the major synaptic connection of the bulb, linking different glomerular units, it participates in numerous reported tasks like odor discrimination or memory formation. Many of those capacities are attributable to the function of peculiar spines with long necks and enormous bulbar heads called gemmules. They accommodate pre- and postsynaptic specializations of the reciprocal synapse with mitral cells (MCs) that are topographically and functionally linked and feature many modes of signal integration and transmission. As of yet, the mechanistic underpinnings of activation and neurotransmitter release are not yet resolved in great detail. This gave rise to the first project of this thesis, which focusses on the detailed granule cell gemmule physiology during local glutamatergic activation. With the help of two-photon glutamate uncaging and concomitant calcium imaging, the spine could be selectively stimulated and its physiological dynamics tested. By the use of different pharmacological agents, we could verify the importance of voltage gated sodium channels (Nav) for local signal amplification and the involvement of NMDA and high voltage activated calcium channels (HVACCs) in the calcium elevation during local stimulation, which is important for γ-aminobutyric acid (GABA) release from the spine. The superthreshold depolarizing signal and strong calcium elevation during local input are exclusively restricted to the spine, which affirms the chemical and electrical isolation of gemmules from the rest of the cell. In this study we thereby confirmed the theoretical prediction of active computation within single spines in our system, emphasizing the functional importance of morphological compartmentalization for the cell’s physiology. The second largest population of interneurons in the olfactory bulb is located in the glomerular layer (GL) of the olfactory bulb and subsumes a plethora of different cell types, categorized in terms of molecular characteristics (mostly neurotransmitter), morphology and function. Among those, dopaminergic (DAergic) juxtaglomerular cells (JGCs) form a subpopulation, which the second part of this thesis is focused on. Innervated by the first or second synapse in the olfactory pathway, these cells exert strong influence in very early stages of olfactory signaling. The gating and transformation of inputs locally and very importantly also laterally over large distances originate from several factors. This cell grouping usually expresses two neurotransmitters at the same time, GABA and dopamine (DA), and encompass many different morphologies and synaptic arrangements with other cell types. Utilizing dopamine transporter (DAT) based staining methods in three animal populations differing in age and species, this study revealed a larger diversity of dopaminergic cell types in the glomerular layer. New ‘uniglomerular’ and a ‘clasping’ cell types were discriminated, showing distinct dendritic formations and glomerulus innervations, which was assessed with a new morphometric tool kit. The clasping cell type features dendritic specializations, densely clasping around single cell bodies. These morphological traits occur in higher abundance and complexity specifically among adult animals and could be structures of neurotransmitter output since they show strong calcium influx upon soma depolarization. Comparisons of the three animal populations showed age- and/or species-dependent changes in the subtype composition of dopaminergic JGCs. Concordant with recent research, the inclusion of age-dependent comparisons in bulbar studies turned out to be of great significance

    Dendritic arborization patterns of small juxtaglomerular cell subtypes within the rodent olfactory bulb

    Get PDF
    Within the glomerular layer of the rodent olfactory bulb, numerous subtypes of local interneurons contribute to early processing of incoming sensory information. Here we have investigated dopaminergic and other small local juxtaglomerular cells in rats and mice and characterized their dendritic arborization pattern with respect to individual glomeruli by fluorescent labeling via patching and reconstruction of dendrites and glomerular contours from two-photon imaging data. Dopaminergic neurons were identified in a transgenic mouse line where the expression of dopamine transporter (DAT) was labeled with GFP. Among the DAT+ cells we found a small short-axon cell (SAC) subtype featuring hitherto undescribed dendritic specializations. These densely ramifying structures clasped mostly around somata of other juxtaglomerular neurons, which were also small, non-dopaminergic and to a large extent non-GABAergic. Clasping SACs were observed also in wild-type mice and juvenile rats. In DAT+ SAC dendrites, single backpropagating action potentials evoked robust calcium entry throughout both clasping and non-clasping compartments. Besides clasping SACs, most other small neurons either corresponded to the classical periglomerular cell type (PGCs), which was never DAT+, or were undersized cells with a small dendritic tree and low excitability. Aside from the presence of clasps in SAC dendrites, many descriptors of dendritic morphology such as the number of dendrites and the extent of branching were not significantly different between clasping SACs and PGCs. However, a detailed morphometric analysis in relation to glomerular contours revealed that the dendrites of clasping SACs arborized mostly in the juxtaglomerular space and never entered more than one glomerulus (if at all), whereas most PGC dendrites were restricted to their parent glomerulus, similar to the apical tufts of mitral cells. These complementary arborization patterns might underlie a highly complementary functional connectivity. The morphometric approach may serve to differentiate also other subtypes of juxtaglomerular neurons, help to identify putative synaptic partners and thus to establish a more refined picture of glomerular network interactions during odor sensing

    Stabilization of mid-sized silicon nanoparticles by functionalization with acrylic acid

    Get PDF
    We present an enhanced method to form stable dispersions of medium-sized silicon nanoparticles for solar cell applications by thermally induced grafting of acrylic acid to the nanoparticle surface. In order to confirm their covalent attachment on the silicon nanoparticles and to assess the quality of the functionalization, X-ray photoelectron spectroscopy and diffuse reflectance infrared Fourier spectroscopy measurements were carried out. The stability of the dispersion was elucidated by dynamic light scattering and Zeta-potential measurements, showing no sign of degradation for months

    Temporal discrimination from the interaction between dynamic synapses and intrinsic subthreshold oscillations

    Get PDF
    The interaction between synaptic and intrinsic dynamics can efficiently shape neuronal input-output relationships in response to temporally structured spike trains. We use a neuron model with subthresh-old oscillations receiving inputs through a synapse with short-term depression and facilitation to show that the combination of intrinsic subthreshold and synaptic dynamics leads to channel-specific nontrivial responses and recognition of specific temporal structures. Our study employs the Generalized Integrate and-Fire (GIF) model, which can be subjected to analytical characterization. We map the temporal structure of spike input trains to the type of spike response, and show how the emergence of nontrivial input- output preferences is modulated by intrinsic and synaptic parameters in a synergistic manner. We demonstrate that these temporal input discrimination properties are robust to noise and to variations in synaptic strength. Furthermore, we also illustrate the presence of these input-output relationships in conductance-based models. Our results suggest a widespread computationally economic and easily tunable mechanism for temporal information discrimination in single neurons. (c) 2020 Elsevier B.V. All rights reserved.This work was supported AEI/FEDER grants FIS2017-84256-P (JJT) and PGC2018-095895-B-I00, DPI2015-65833-P (RL & PV)

    Role for Circadian Clock Genes in Seasonal Timing: Testing the Bunning Hypothesis

    Get PDF
    A major question in chronobiology focuses around the “BĂŒnning hypothesis” which implicates the circadian clock in photoperiodic (day-length) measurement and is supported in some systems (e.g. plants) but disputed in others. Here, we used the seasonally-regulated thermotolerance of Drosophila melanogaster to test the role of various clock genes in day-length measurement. In Drosophila, freezing temperatures induce reversible chill coma, a narcosis-like state. We have corroborated previous observations that wild-type flies developing under short photoperiods (winter-like) exhibit significantly shorter chill-coma recovery times (CCRt) than flies that were raised under long (summer-like) photoperiods. Here, we show that arrhythmic mutant strains, per01, tim01 and ClkJrk, as well as variants that speed up or slow down the circadian period, disrupt the photoperiodic component of CCRt. Our results support an underlying circadian function mediating seasonal daylength measurement and indicate that clock genes are tightly involved in photo- and thermo-periodic measurements

    Preparation of p-type conducting transparent CuCrO2 and CuAl0.5Cr0.5O2 thin films by sol-gel processing

    No full text
    CuCrO2 and CuAl0.5Cr0.5O2 thin films were prepared by sol-gel processing and subsequent two-step annealing in air and inert gas atmosphere. Phase pure films with delafossite structure were obtained by adjusting the respective temperatures. The related phase development strongly affects the optical and electrical performance, giving leeway for optimization. The resulting CuCrO2 (16 Omega cm, transmittance 21%) and CuAl0.5Cr0.5O2 (11 Omega cm, transmittance 49%) films showed p-type conductivity by their positive Seebeck coefficients. The microstructure of the systems was characterized by scanning and transmission electron microscopy and correlated to the growth of different crystalline phases during the annealing steps. Thereby, crystal thermodynamics also affects the respective film performance, alleviating delafossite formation from the amorphous phase

    Structural and physical effects of Mg-doping on p-type CuCrO2 and CuAl0.5Cr0.5O2 thin films

    No full text
    Magnesium doped thin films of CuCrO2 and CuAl0.5Cr0.5O2, both exhibiting delafossite structure, were synthesized via sol-gel processing. The influence of the dopant on the phase development during the subsequent 2-step annealing procedure was monitored by X-ray diffraction. Systematic variation of the dopant concentration between 2.5 and 15% revealed that the Mg inhibits crystallization and stabilizes spinel phases against thermal decomposition, whereby the amount of impurities in the delafossite films is increased. Nevertheless the p-type conductivity and surprisingly the transmittance of the CuCrO2 films were improved by Mg doping by two orders of magnitude and 16%, respectively. On the contrary the performance of the CuAl0.5Cr0.5O2 films hardly profits from Mg doping. The Seebeck-coefficients of this system even imply a decreasing charge carrier density with increasing dopant concentration, which can only be interpreted as an expulsion of the native defects acting as strong intrinsic doping. The band gap of both oxides remains constant, however
    • 

    corecore