1,076 research outputs found

    Lower Bounds for the Complexity of the Voronoi Diagram of Polygonal Curves under the Discrete Frechet Distance

    Full text link
    We give lower bounds for the combinatorial complexity of the Voronoi diagram of polygonal curves under the discrete Frechet distance. We show that the Voronoi diagram of n curves in R^d with k vertices each, has complexity Omega(n^{dk}) for dimension d=1,2 and Omega(n^{d(k-1)+2}) for d>2.Comment: 6 pages, 2 figure

    Locally Correct Frechet Matchings

    Full text link
    The Frechet distance is a metric to compare two curves, which is based on monotonous matchings between these curves. We call a matching that results in the Frechet distance a Frechet matching. There are often many different Frechet matchings and not all of these capture the similarity between the curves well. We propose to restrict the set of Frechet matchings to "natural" matchings and to this end introduce locally correct Frechet matchings. We prove that at least one such matching exists for two polygonal curves and give an O(N^3 log N) algorithm to compute it, where N is the total number of edges in both curves. We also present an O(N^2) algorithm to compute a locally correct discrete Frechet matching

    Computing the Similarity Between Moving Curves

    Get PDF
    In this paper we study similarity measures for moving curves which can, for example, model changing coastlines or retreating glacier termini. Points on a moving curve have two parameters, namely the position along the curve as well as time. We therefore focus on similarity measures for surfaces, specifically the Fr\'echet distance between surfaces. While the Fr\'echet distance between surfaces is not even known to be computable, we show for variants arising in the context of moving curves that they are polynomial-time solvable or NP-complete depending on the restrictions imposed on how the moving curves are matched. We achieve the polynomial-time solutions by a novel approach for computing a surface in the so-called free-space diagram based on max-flow min-cut duality

    Four Soviets Walk the Dog-Improved Bounds for Computing the Fr\'echet Distance

    Get PDF
    Given two polygonal curves in the plane, there are many ways to define a notion of similarity between them. One popular measure is the Fr\'echet distance. Since it was proposed by Alt and Godau in 1992, many variants and extensions have been studied. Nonetheless, even more than 20 years later, the original O(n2logn)O(n^2 \log n) algorithm by Alt and Godau for computing the Fr\'echet distance remains the state of the art (here, nn denotes the number of edges on each curve). This has led Helmut Alt to conjecture that the associated decision problem is 3SUM-hard. In recent work, Agarwal et al. show how to break the quadratic barrier for the discrete version of the Fr\'echet distance, where one considers sequences of points instead of polygonal curves. Building on their work, we give a randomized algorithm to compute the Fr\'echet distance between two polygonal curves in time O(n2logn(loglogn)3/2)O(n^2 \sqrt{\log n}(\log\log n)^{3/2}) on a pointer machine and in time O(n2(loglogn)2)O(n^2(\log\log n)^2) on a word RAM. Furthermore, we show that there exists an algebraic decision tree for the decision problem of depth O(n2ε)O(n^{2-\varepsilon}), for some ε>0\varepsilon > 0. We believe that this reveals an intriguing new aspect of this well-studied problem. Finally, we show how to obtain the first subquadratic algorithm for computing the weak Fr\'echet distance on a word RAM.Comment: 34 pages, 15 figures. A preliminary version appeared in SODA 201

    Progressive Simplification of Polygonal Curves

    Get PDF
    Simplifying polygonal curves at different levels of detail is an important problem with many applications. Existing geometric optimization algorithms are only capable of minimizing the complexity of a simplified curve for a single level of detail. We present an O(n3m)O(n^3m)-time algorithm that takes a polygonal curve of n vertices and produces a set of consistent simplifications for m scales while minimizing the cumulative simplification complexity. This algorithm is compatible with distance measures such as the Hausdorff, the Fr\'echet and area-based distances, and enables simplification for continuous scaling in O(n5)O(n^5) time. To speed up this algorithm in practice, we present new techniques for constructing and representing so-called shortcut graphs. Experimental evaluation of these techniques on trajectory data reveals a significant improvement of using shortcut graphs for progressive and non-progressive curve simplification, both in terms of running time and memory usage.Comment: 20 pages, 20 figure

    A Spanner for the Day After

    Full text link
    We show how to construct (1+ε)(1+\varepsilon)-spanner over a set PP of nn points in Rd\mathbb{R}^d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters ϑ,ε(0,1)\vartheta,\varepsilon \in (0,1), the computed spanner GG has O(εcϑ6nlogn(loglogn)6) O\bigl(\varepsilon^{-c} \vartheta^{-6} n \log n (\log\log n)^6 \bigr) edges, where c=O(d)c= O(d). Furthermore, for any kk, and any deleted set BPB \subseteq P of kk points, the residual graph GBG \setminus B is (1+ε)(1+\varepsilon)-spanner for all the points of PP except for (1+ϑ)k(1+\vartheta)k of them. No previous constructions, beyond the trivial clique with O(n2)O(n^2) edges, were known such that only a tiny additional fraction (i.e., ϑ\vartheta) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black box fashion

    Approximating the Distribution of the Median and other Robust Estimators on Uncertain Data

    Get PDF
    Robust estimators, like the median of a point set, are important for data analysis in the presence of outliers. We study robust estimators for locationally uncertain points with discrete distributions. That is, each point in a data set has a discrete probability distribution describing its location. The probabilistic nature of uncertain data makes it challenging to compute such estimators, since the true value of the estimator is now described by a distribution rather than a single point. We show how to construct and estimate the distribution of the median of a point set. Building the approximate support of the distribution takes near-linear time, and assigning probability to that support takes quadratic time. We also develop a general approximation technique for distributions of robust estimators with respect to ranges with bounded VC dimension. This includes the geometric median for high dimensions and the Siegel estimator for linear regression.Comment: Full version of a paper to appear at SoCG 201
    corecore