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Role for Circadian Clock Genes in Seasonal Timing:
Testing the Bünning Hypothesis
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Dept. of Genetics, University of Leicester, Leicester, United Kingdom

Abstract

A major question in chronobiology focuses around the ‘‘Bünning hypothesis’’ which implicates the circadian clock in
photoperiodic (day-length) measurement and is supported in some systems (e.g. plants) but disputed in others. Here, we
used the seasonally-regulated thermotolerance of Drosophila melanogaster to test the role of various clock genes in day-
length measurement. In Drosophila, freezing temperatures induce reversible chill coma, a narcosis-like state. We have
corroborated previous observations that wild-type flies developing under short photoperiods (winter-like) exhibit
significantly shorter chill-coma recovery times (CCRt) than flies that were raised under long (summer-like) photoperiods.
Here, we show that arrhythmic mutant strains, per01, tim01 and ClkJrk, as well as variants that speed up or slow down the
circadian period, disrupt the photoperiodic component of CCRt. Our results support an underlying circadian function
mediating seasonal daylength measurement and indicate that clock genes are tightly involved in photo- and thermo-
periodic measurements.
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Introduction

Seasonal changes in day-length provide a reliable environmen-

tal cue used by many temperate species to adapt to their

fluctuating environments. While the available evidence suggests

that changes in day-length are monitored by an internal

photoperiodic timer [1], intensive studies of photoperiodicity in

animals over the last 80 years have yet to identify an underlying

molecular mechanisms [2] (although significant progress has been

made in plants and mammals [3–5]).This is in marked contrast to

the level of understanding of the circadian timer that regulates

daily rhythms, where studies in various model organisms,

particularly Drosophila, led to the discovery of principles and

molecules that are highly conserved in diverse phyla [6].

The Bünning hypothesis [7] invoked a link between the

circadian and the photoperiodic mechanisms and suggested that

circadian rhythmicity is required for day-length measurement.

Bünning’s original model assumed that circadian oscillations

consist of light (‘photophil’) and dark (‘scotophil’)-requiring phases.

In short days, ambient light is present only during the photophil

phase, and the dark phase is not exposed to light. As days become

longer, light coincides with the scotophil phase. The relative size of

the photophil and scotophil phases encodes the critical photope-

riod (time of the year) that induces the seasonal response. A

modified version of this model was later named the ‘external

coincidence model’ [8]. An alternative hypothesis, the ‘internal

coincidence model’, was also proposed, where light plays only an

indirect role, and the critical photoperiod is encoded by unique

phase relationships between two internal oscillators. Several

experimental protocols have been devised to test the Bünning

hypothesis, one of which is the Nanda-Hamner protocol [9],

which employs exotic light-dark cycles of ultra-long periods (T.

72 hr). If the seasonal response peaks at 24 hr intervals (‘positive

Nanda-Hamner’), a link, not necessarily causal, with the circadian

system in photoperiodic timing is indicated [9,10].

Drosophila melanogaster, which was instrumental in identifying

higher eukaryotic circadian clock genes [11], also exhibits a

photoperiodic response [12], providing an opportunity to test the

link between the two timers. This response is manifested as a

developmental arrest of the ovaries (i.e. reproductive diapause)

under short (autumnal) days and lower temperatures, presumably

enhancing the fly’s ability to survive the winter in temperate

regions. Although Nanda-Hamner experiments in Drosophila
revealed an underlying 24 h oscillation [13], experiments using the

period (per) clock mutants [12] suggested that the two systems are

independent, as the per null mutants were still capable of

discriminating between long and short days (albeit with a shifted

critical day-length). Later, natural allelic variation in the timeless
(tim) locus was associated with diapause in Drosophila [14,15], and

in Chymomyza costata [16]. Knockdown of per and the positive

circadian regulator, cycle, in the bean bug Riptortus pedestris by

RNAi caused simultaneous disruption of both circadian output

(cuticle deposition rhythm) and photoperiodic diapause [17]. In

Drosophila triauraria, genetic variation in tim and cry (but not in

per, Clk or cyc) was significantly associated with the photoperiodic

response [18]. Yet, because the impact of a given clock gene

mutation on the photoperiodic response can be interpreted as a

pleiotropic effect on diapause, the application of the Bünning

hypothesis to these results has been questioned [19].

Given the shallow photoperiodic diapause of D. melanogaster
[14], we have sought an alternative seasonal phenotype in this
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species that could be used for testing Bünning’s hypothesis.

Measuring chill comma recovery times (CCRt) is an established

approach for studying insect thermal adaptation [20]. Here, we

build on the earlier observation that flies raised in different

photoperiods show differing CCRt [21], and use this phenotype to

test day-length timing in various circadian clock mutants.

Results

The chill-coma recovery times (CCRt) of wild-type flies raised at

different photoperiods is sexually dimorphic (Figure 1). Females

that developed under short winter-like photoperiod exhibit

significantly shorter CCRt than females that were raised under

long summer-like photoperiods (log rank test, x2 = 11.8, df = 1, p,

0.001). However, CCRt did not differ significantly between males

raised on long vs. short days (Figure 1). Females kept in covered

vials (in darkness, DD) within the same chambers also showed a

moderate but significant differential response, driven by the low-

amplitude (,2uC) thermoperiod that was generated by the lighting

system (log-rank test x2 = 7.9, p,0.01, see Methods). In another

set of experiments where the heat cycles produced by the two

photoperiods were offset by a counteracting temperature cycle,

there was no significant difference in the CCRt between long and

short photoperiods in females kept in covered vials (in darkness,

DD). The difference in median CCRt between long and short days

in females exposed to light (driven by both photoperiod and

thermoperiod) was twice as large as the difference exhibited by the

thermoperiod only (DD) females (14 vs. 7 min). This difference in

photoperiod was significant after statistically accounting for the

temperature effect (via non-parametric ANCOVA, W = 664, p,

0.001) confirming the interaction between photoperiod and

thermoperiod.

We also tested the CCRt of wild-type females over a range of

five photoperiods (Figure S1). For short photoperiods 8, 10 and

12 hr, the median CCRt was 15 min (with 95% CI overlapping

13–33). In the 14 hr photoperiod, the median was 13 min (12–19)

and at 16 hr was 24 (20–30). Thus, an intermediate photoperiod

(comparable to the critical day length in diapause studies) would lie

within the 14–16 hr interval. We also examined the association

between the CCRt and diapause propensity (Figure S2). Newly

emerging females were maintained in diapausing inducing

conditions (Methods). After 12 days their CCRt was tested,

followed by ovary dissection for determining their reproductive

state. The CCRt did not differ significantly between diapausing

(n = 82) and non-diapausing (n = 39) females (x2 = 0.1, df = 1,

p = 0.70).

There was however a significant difference in female weight

between long vs. short day (Figure S3): Fresh weight in short days

was higher (F1,8 = 9.68, p,0.05), due to higher water content

(F1,8 = 6.57, p,0.05), since dry weight was similar (F1,8 = 4.13,

p = 0.07). Males also showed weight difference between long and

short day, which was significant, both for fresh and dry weight

(Figure S3). Thus, size or water differences cannot fully explain the

photoperiodic CCRt response (which is absent in males). In

addition, the CCRt of males resembles that of females in short

days (although the size difference between the sexes is substantial).

The finding that female flies were able to discriminate between

long and short days provided us with the opportunity to test the

role of circadian clock genes in this response. The CCRt of females

from congenic strains carrying per01, tim01, and ClkJrk mutations

did not show any photo/thermoperiodic effect (Figure 2). In

general, the mutant curves resembled the WT short-day response

(median CCRt 19 min, range 15–25). For example, in long days,

the median recovery time for per01 was 14 min (13–15), for ClkJrk

19 min (18–23) and for tim01 23.5 min (21–35). We did notice

however, some differences in cold-tolerance among the mutants,

particularly between per and the two other mutants (note the

overlapping CIs).

To gain insight into the metabolic correlates of the photope-

riodic response, we measured glycogen, free fatty acids and protein

levels (Figure S4). In wild-type females, glycogen was significantly

higher in long days (F1,46 = 4.05, p = 0.05), while four time points

taken during the day did not show any significant differences

(F1,46 = 2.22, p = 0.14). In contrast, in ClkJrk females glycogen

levels did not differ between photoperiods (F1,22 = 0.85, p = 0.37).

For free fatty acids, neither the photoperiod nor the time of the

day showed significant differences (Figure S4) in WT or ClkJrk.

Similarly, total protein also did not differ between photoperiods,

but intriguingly there was a significant photoperiod:Zt interaction

in the ClkJrk mutants (F2,21 = 7.41, p,0.01).

The availability of mutants that exhibit a long or short circadian

period provided us with a further opportunity for testing the

Bünning hypothesis. We compared long and short mutant alleles

of three genes (Figure 3): perL, perS (28.8 vs 19.3 hr circadian

period [22]), dbtL, dbtS (26.8 vs 19.3 hr, [23]) and timUL, timS1

(32.7 vs 21.1 hr, [24]). An omnibus ANOVA for analysing the

data of all genes simultaneously including experiments at different

photo/thermo-periods resulted in a highly significant ‘allele’ factor

(short v long period, F1,813 = 28.46, p,0.001) but not ‘photope-

riod’ (F1,813 = 0.57, p = 0.45). There was no significant gene:pho-

toperiod interaction (F2,813 = 1.39, p = 0.25). In all three genes, the

CCRt of the long alleles was consistently shorter (Figure 3,

particularly evident in per mutants), in both photoperiods,

suggesting that the long period mutant perceive the day as shorter

compared to short period mutants. This result is consistent with

Bünning’s original model (Figure 3). We also observed that CCRt

does not fluctuate significantly throughout the day in WT,

(x2 = 1.4, df = 3, p = 0.7; Figure S5) so that the differences between

the mutants is not due to our sampling of CCRt at different

subjective phases. We have also compared the average phase angle

of the light-entrained activity of the long and the short-period

mutants (Figure S6). We estimated the phase values using the

pooled locomotor activity profile (16–35 flies in each experiment),

Author Summary

The circadian clock consists of an extensive genetic
network that drives daily rhythms of physiological,
biochemical and behavioural processes. The network is
evolutionary conserved and has been extensively studied
in a broad range of organisms. Another genetic network
constitutes the photoperiodic clock and monitors the
seasonal change in day-length. Here, we address a major
and long-standing question in chronobiology: whether the
circadian clock is involved in photoperiodic timing, also
known as the Bünning hypothesis. Drosophila, as with
many other insects in temperate regions, exhibits a
photoperiodic response that allows the insect to anticipate
and survive the winter. Here we show that the cold-
tolerance of the fly is regulated by the photoperiod. We
use this phenotype to test day-length timing in various
circadian clock mutants and observe that in null clock
mutants, the photoperiodic response is abolished, whereas
in mutants that exhibit short or long daily cycles, the
photoperiodic response is modified, further supporting a
circadian-clock function. Overall, these results provide the
first evidence in Drosophila that support for the Bünning
hypothesis, and pave the way for the genetic dissection of
seasonal timing in Drosophila melanogaster.

Seasonal Timing in Drosophila
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averaged over four days. Across genes (n = 3, each tested for two

alleles, at two photoperiods, giving 12 data points), there was a

significant difference between the long and the short alleles for

both morning peak (MP; F1,9 = 140.8, p,0.0001) and evening

peak (EP; F1,9 = 18.3, p,0.01). Both the MP and EP were

advanced in short allele flies, but for the MP, the advance was

enhanced in short day, resulting in significant allele: photoperiod

interaction (F1,9 = 105, p,0.001).

We have also explored the role of alternative splicing in the per
locus that was previously associated with seasonal adaptation

[25–27]. Specifically, under low temperatures, as well as short

photoperiods, the splicing level of intron 8 in the 39UTR of per is

increased. To test the role of per splicing in CCRt, we used

transgenic lines in which the splicing signal is missing and the

intronic sequence cannot be spliced (type A), or a construct that

does not contain the intron (type B9) [28]. The perA and perB9

transgenes were expressed in per01 flies. For each transgene two

independent insertion lines were tested (see Methods) and their

data were pooled. As shown in Figure 4, flies carrying the type B9

transgene showed shorter CCRt both under long or short photo/

Figure 1. Photo/thermoperiodic-dependent temperature-tolerance in Drosophila. Survival curves showing recovery from coma of wild-type
flies (Hu) that were developed in either short winter-like (blue) or long, summer-like (red) daylengths (N1, N2 = 38, 22). Flies exposed to diurnal light
and temperature cycles are shown in the top panel, flies exposed only to the thermoperiod are depicted in the middle panel (shaded grey, N1,
N2 = 47, 46). Wild-type females (but not males) that develop under short days exhibit significantly faster chill-coma recovery times (CCRt) than flies
that were raised under long day photo- or thermoperiods. In a control experiment (bottom panel), where the flies are maintained in the photoperiod
but in covered vials (DD), and with the thermoperiod overridden by a reversed temperature cycle (i.e. D T = 0uC), there is no detectable difference in
CCRt (N1, N2 = 29, 24).
doi:10.1371/journal.pgen.1004603.g001
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thermoperiod or thermoperiod alone. ANOVA incorporating all

the conditions in which the transgenic flies were tested revealed a

significant splice type factor (F1,634 = 8.53, p,0.01). In contrast to

the wild-type Hu strains, the splice variants were not photoperi-

odic (Figure 4), presumably due to the different genetic

background of the transformant flies (yw). The control lines perG

did show a thermoperiodic response (in DD; x2 = 10.1, p,0.01;

N1,N2 = 128,112), but were not photoperiodic (LD: x2 = 0.1

p = 0.77; N1,N2 = 110,121). In general the CCRt of perG

resembled the response of perA with relatively longer medians

(LD:SD = 33,35 min; in DD, LD:SD = 60, 39.5 min).

Taken together, the results indicate some effect on cold

tolerance for per splicing, further supporting the notion that the

circadian clock or signalling to the circadian clock is involved in

this seasonal adaptation.

Discussion

The chill-coma recovery test has been used in various insect

species for studying cold tolerance and adaptation [29]. Recent

studies in D. montana have demonstrated that the CCRt in this

species is under photoperiodic regulation [30,31], consistent with

the expectation that the autumnal shortening of the day induces

various process, including nutrient regulation and reserve accu-

mulation that allows the flies to survive the winter.

Here, we have shown that a similar day-length regulation is

present in D. melanogaster, and we exploited this response to study

the link between the circadian clock and seasonal timing. While

our experiments have not disentangled entirely the thermo- and

photo-periodic effects, the difference in CCRt response in LD

(day-length encoded by both photoperiod and thermoperiod), and

DD (thermal information only) would suggest that both cues

contribute to the response (Figure 1).

We show that in clock mutant strains per01, tim01 and ClkJrk the

day-length measurement is disrupted. The lack of photoperiodic

CCRt in per01 is in apparent contradiction to the previously

reported photoperiodic diapause in this mutant [12]. Differences

between the CCR and diapause phenotypes may represent two

separate photoperiodic circuits that use different genetic networks,

a situation which resembles the different circadian locomotor and

eclosion circuits [32,33]. Interestingly, Helfrich-Förster [34]

analysed the bimodal locomotor activity profile of per mutants

and suggested that the morning peak is derived from a per-

independent circadian component (see also [35]), and that this

component might be involved in photoperiodic timing. In

addition, a recent study [36] using temperature entrainment

suggests that per01 (and tim01) are not entirely clockless.

However, it should be noted that the reported photoperiodic

response of diapause in per01 (and per deficiency flies) is altered

because the critical day length (CDL) for inducing diapause is

several hours shorter than in wild-type [12,37]. In our experi-

ments, the per01 mutants mirror their CDL and exhibit the

shortest CCRt. This correlation may reflect the situation in the

wild, where populations in colder environments (presumably more

cold-adapted flies) would be expected to show a shorter CDL that

will trigger diapause later in the season.

The substantial difference in CCRt between long- and short

circadian period alleles is particularly informative (Figure 3). The

constitutively ‘short-day’ response of the long-period mutants fits

well with the ‘external co-incidence’ model underlying day-length

measurements (Figure 3G). In wild-type flies, short days coincide

with the photophil phase of the pacemaker, while long days extend

to the scotophil phase of the oscillations. In long-period mutants

(where photophil phase is longer), various daylengths always

coincide with the photophil phase and are interpreted as short

days, while in short-period mutants both long and short day-length

may overlap with the scotophil phase and be interpreted as long

days. The main weakness of this model is the requirement for a

uniform waveform of the oscillation under long and short days. In

Figure 2. Photo/thermo-periodic response is disrupted in clock
mutants. In clock mutant females per01 (N1, N2 = 37, 27), tim01 (N1,
N2 = 58, 44), ClkJrk (N1, N2 = 49, 82) the differential CCRt response to day-
length (flies exposed to photo/thermo-period cycles) is abolished. All
strains have the same genetic background (Hu). Flies were developed in
either short winter-like (blue) or long, summer-like (red) day-lengths.
doi:10.1371/journal.pgen.1004603.g002
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Drosophila however, this model is unlikely to be valid, as the

oscillation waveform of overt rhythms (locomotor activity) and

level of clock proteins change during the seasons [35,38].

Furthermore, the model (Figure 3) disregards the entrainment of

the mutant oscillation during the seasons [35]. Depending of the

phases of the mutants, different outcomes may be predicted

(Figure S7). Indeed, we have observed a consistent phase

difference between long and short period alleles (phase advance

in short-period alleles, Figure S6). Interestingly, our data mirrors

an early study of the eclosion rhythm of D. pseudoobscura [39],

where wild-type flies kept in T cycles longer than the circadian

period (resembling the short-period mutants in our study, kept

under 24 hr cycle) showed a phase advance, and flies kept in T,t
exhibited phase delays. While the link between the circadian phase

and the photoperiodic response is yet not clear, the different

photoperiodic phenotypes of the slow and fast clock mutants seems

to suggest a causative role for the circadian pacemaker in day-

length measurement, but further experiments are required to

identify the underlying model (external- vs. internal-coincidence,

or any other model). A further analysis of the critical day length of

the CCRt (Figure S1) in the long and short clock mutants may

provide more insights about the link between the circadian system

and the photoperiodic timer, and this will be published elsewhere.

Similarly, using the Nanda-Hamner or Bünsow protocols [9]

would provide more ways for testing the circadian role in the

photoperiodic CCRt.

Our results also show that the regulation of per splicing, a

process which was previously implicated in the fly’s seasonal

response [26,27], is also involved in the CCRt, as flies carrying the

type B9 transgene exhibited shorter recovery times compared with

Figure 3. CCRt of long and short period alleles of clock genes. The response of mutant females maintained in long (left column) and short
(right column) days (thermoperiods) is depicted. Response of perL and perS is shown in (A) (44, 42 = 11.9, p,0.001; N1, N2 = 53) and (B) (x2 = 11.1,
df = 1, p,0.001; N1, N2 = 53,44). The response of dbtL, dbtS is depicted in (C) (x2 = 9.5,df = 1, p,0.05, N1, N2 = 29, 20) and (D) (x2 = 2.8, df = 1, p = 0.093;
N1, N2 = 29,20). The response of timS1 and timUL is shown in (E) (x2 = 18.4, df = 1, p,0.001, N1, N2 = 27, 51) and (F) x2 = 1.7, df = 1, P = 0.19; N1, N2 = 38,
23). G. Schematic diagram showing Bünnings’ external coincidence detector in wild-type (WT) and mutant flies. In WT short days coincide with the
photophil phase while long day extend to the schotophil phase (note that daylength may be either encoded by photoperiod or the thermoperiod). In
long-period mutants, long days still coincide with the photophil phase, and are interpreted as short days, leading to a constitutively short day
response. In short period mutants the photophil phase may be brief so even short day are interpreted as a long one. In both type of mutants, long
and short daylength may coincide with the same phase of the detector, resulting in loss of the photo/thermo-periodic response.
doi:10.1371/journal.pgen.1004603.g003

Figure 4. Chill coma recovery in per splicing transgenic flies. Medians of CCRt under long (left panels) and short day (right panels) driving by
photo/thermo-periods, or by the thermoperiod only (shaded grey). Data were pooled for each of the two strains expressing each of the splice variant
(A, B). Flies carrying Type B9 transgene, which is locked into the constitutive per 39 UTR splice mode, show consistently shorter CCRt. Error bars
represent SE. Number of females is also shown.
doi:10.1371/journal.pgen.1004603.g004
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flies carrying type A (Figure 4). This fits well with the enhanced

splicing at cold conditions in the type B9 transgenic per but

contrasts with the observation that the seasonal locomotor

activity profile of the two type of transgenic flies is similar [25].

This may suggests that retention or removal of the per 39 intron

is affecting the CCRt, while the splicing process itself is critical

for the cold-induced phase advance in the locomotor activity

rhythm. Our results reflect the seasonally adaptive nature of per
splicing because during the autumnal shortening of the

photoperiods (and decreasing temperatures), per splicing will

inevitably increase [26,35]. This will lead to locomotor changes

but also, we suggest, to further physiological changes that may

allow the fly to tolerate lower temperatures, as manifested by

shorter CCRt (Figure 4).

The circadian clock and the photoperiodic timer appear to

act as two modules, each consisting of a group of functionally

related genes [40]. Genes interact primarily with genes within

the same module, although individual genes may have an effect

on the other module. Such pleiotropic effect of individual clock

genes on diapause was proposed as an alternative explanation to

the ‘‘Bünning hypothesis’’ [10]. In the current work however,

the fact that a battery of circadian clock genes are implicated in

daily light and temperature measurements strongly indicates

that the two modules functionally interact, not simply as isolated

pleiotropic effects of one gene on another module. Under

pleiotropy, knockdown of different clock genes may results in

different outcomes. For example, RNAi targeting either per or

cyc in the bean bug Riportus pedestris led to aberrant

photoperiodic response, but in opposite directions [17]. In

contrast, in our experiments all null mutants exhibit the same

trend (loss of long day response; Figure 2), further suggesting

that the Bünning hypothesis provides the most parsimonious

explanation.

The shortening of CCRt in flies exposed to short photoperiod,

which was also recently reported for D. montana [30], reflects an

enhanced cold tolerance acquired during development. This

cold acclimation is presumably mediated by cold hardening, a

process which involves changes in phospholipid fatty acids

composition of cell membranes [41,42], as well as polyols, sugars

and other metabolites [43]. The ecological relevance of the

improved cold tolerance following cold hardening was previously

demonstrated in enhanced D. melanogaster survivorship [44] and

reproductive behaviour [45] in flies primed for experiencing low

temperatures.

Beyond demonstrating the role of the circadian clock in seasonal

timing, our results here juxtapose the CCRt phenotype against

female reproductive diapause, the classic readout for insect

seasonality [46]. While cold hardiness is often associated with

diapause our results suggest that the responses are triggered by

different mechanisms (Figure S1). Similarly studies in D. montana
shows that the CCRt is not always correlated with diapause and is

strain-dependent [30].

For studying seasonal timing, analysing diapause involves

extremely laborious dissection of ovaries, and the binary nature

of the phenotype (diapause status) requires the processing of large

sample sizes for detecting appreciable effects. In contrast, the

automated CCRt phenotyping allows for high-throughput screen-

ing and the protocol requires that flies are maintained at 20uC,

which is more conducive to GAL4 misexpression studies than

diapause experiments that are usually performed at 12uC. CCRt

thus provides a powerful and efficient method for dissecting

the genetic and anatomical basis of seasonal timing in D.
melanogaster.

Methods

Fly strains
The strains per01, tim01, ClkJrk were used. All strains were

crossed to an isofemale strain originating from a wild Dutch

population in Houten [14]. The progeny were screened for

individuals carrying the mutation using PCR genotyping as

previously described [47] and backcrossed to Hu, a process which

was repeated 8 times, resulting in all the mutations inserted in the

genomic Hu background (.99%) that also carries the ls-tim
natural allelic variant [14]. Mutants were made homozygous by

further crossing to balancer strains (also on a Hu background). In

addition, the strains perL and perS [13], dbtS, dbtL [23], timUL and

timS1 [48] were used (the genetic background of these mutants is

not Hu). The mutant’s circadian locomotor activity was verified at

19.5uC, which was used for the CCRt experiments (Figure S6).

To investigate the effect of per splicing on CCRt we used

congenic transgenic lines that generate either type A (PERA-18,

PERA-29) or type B9 (PERB9-11, PERB9-12) per RNA and have

been used to rescue per01 flies. We have also tested transgenic flies

expressing both type A and type B9 (perG). These lines have been

described previously [28]. All strains were maintained at 25uC in

LD 12:12 on a standard cornmeal media.

The CCR protocol
Around 100 flies were kept on egg-collection food for 18 hr, and

four replicates of 40 eggs each were transferred to new vials. The

vials were placed in either long (16 hr) or short (8 hr) day using

fluorescent light boxes. Temperature within the light boxes

fluctuated during the LD cycle, due to heat produced by the

florescent light, from 21uC during the light phase to 19uC during

scotophase. Temperature was monitored by data loggers (Tinytag

UK). Each experiment was replicated twice with two different light

boxes (total of 8 vials). DD samples (vials covered by aluminum

foil, providing constant darkness) were also included, and were

used for analysing the effect of the thermoperiod (2uC cycling).

The flies were developed under these conditions for 20 days, and

emerging adults (age 3–4 days) were tested for their chill coma

recovery as follows: At ZT 3.5 (ZT, Zeitgeber time, hr after lights

on) the flies were anesthetized by ice, sexed and transferred

individually to glass activity tubes (outer diameter = 5 mm,

80 mm) and cotton plugs were used to place the fly at the middle

of the tube. The flies were kept on ice at 4uC for 3 hours. At ZT

6.5, the glass tubes were loaded into the Drosophix locomotor

activity monitor (Padova, Italy), which was previously described

[27] at 25uC. This infra-red based system uses the same glass tubes

used by the Trikinetics system, but the space of the tube was

reduced to 2 cm by cotton plugs (i.e. the fly was approximately

1 cm from the light beam).

The loading time (t0) for each fly was recorded by the system. A

custom written script in ‘‘R’’ [49] was used to calculate the

recovery time (CCRt), by subtracting t0 from the time of first

movement detected by the system (consequently, our calculated

recovery times are slightly longer, by definition, from previous

studies, where recovery time was defined as the time in which the

fly was first observed standing).

Given the exponential distribution of the CCRt, these data are

best analysed by survival curves. We used the Survival R library to

fit Kaplan-Meier curves, and log-rank tests to compare the

different curves, using x2 statistics with one degree of freedom [50]

We used ANOVA to test the contribution of various factors across

different experiments (e.g. day-length, sex, photo- vs. thermoper-

iod entrainment, etc.). For this purpose we used log transformation

for variance stabilisation. To compare the effect of photoperiod

Seasonal Timing in Drosophila

PLOS Genetics | www.plosgenetics.org 7 September 2014 | Volume 10 | Issue 9 | e1004603



after correcting for temperature effect, a non-parametric AN-

COVA was carried using the Quade procedure [51]. Briefly, the

CCRt irrespective of group membership (photo- or thermo-

periodic) were ranked, and regressed over day-length. The

residuals were then compared by the Wilcoxon rank sum test.

Diapause
Male and female flies (Hu genetic background) were collected

within a six hour post eclosion window and placed under 8:16LD

(light:Dark) at 12.260.2uC. After 12 days, CCRt was measured

and immediately followed by dissection of the female ovaries in

PBS. Reproductive arrest was determined as previously described

[14]. The diapause level in females that were maintained under

the same conditions but were not tested for CCRt was not

significantly different from females that were exposed to coma

inducing temperature (F1,14 = 0.44, p = 0.51), indicating that the

cold treatment did not contribute to diapause state.

Free fatty acid, glycogen and proteins measurements
Flies developing under LD and SD (see CCR protocol) were

collected (4 days old) at four time points (Zt1, 7, 13 and 19) and

immediately frozen in liquid nitrogen and stored at 280C. The

fresh weight of 10 individuals was recorded after a 5 min thaw in

ice with a precision balance (Precisa180A). Glycogen, proteins and

free fatty acid content were measured in these samples and

expressed as mg or nmol per fresh weight. Glycogen concentration

was obtained from samples that were homogenized in 100 ml of

water in ice for 30 sec. After centrifugation at top speed for 5 min

(4uC), the homogenates (10 ml were saved for protein assay) were

boiled for 5 min and Hydrolysis buffer was added to final volume

of 120 ml (Sigma-Aldrich, MAK016). Glycogen content was

assayed by colorimetric reaction (570 nm) after treatment with

Hydrolysis Enzyme and Development Enzyme (Sigma-Aldrich,

MAK016). Glucose background was removed from each sample.

10 ml of homogenates were diluted 10 times in water and proteins

quantified spectrophotometrically (595 nm) using Bradford re-

agent (10 ml diluted samples +290 ml reagent; Sigma-Aldrich,

B6916). Total proteins were quantified using a BSA (10 mg/ml)

standard curve. The free fatty acids were isolated from samples

homogenized for 30 sec in ice in 200 ul chloroform-1% Triton X-

100. After 10 min centrifugation the organic phase was isolated

and vacuum dried for 30 min to remove the chloroform. The

lipids were dissolved in 200 ul of fatty acid buffer (ABCAM

ab65341). Free fatty acid content was assayed by colorimetric

reaction (570 nm) after Acyl-CoA synthesis (ABCAM ab65341).

FLUOStar omega plate reader was used for both colorimetric

reactions and the Bradford assay.

Fresh, dry weight and water content
Fresh weight (FW, g) was measure from samples collected at Zt

3.5 (LD and SD) using a precision balance (Precisa180A). Dry

weight (DW, g) was measured after desiccating the sample at 60uC
for 3 days. The difference between FW and DW indicate the water

content (WC, g).

Locomotor activity
The locomotor activity of 3–4 days old virgins was measure at

19.560.5uC using the Trikinetics system. The activity of flies was

recorded during 4 days entrainment (either LD or SD) follow by 5

days of constant darkness (DD). The DD activity was also used to

calculate the flies’ circadian period of activity using ‘‘Cosinor

analysis’’ [52], which employs the least squares method to fit a sine

wave to a time series. Monte Carlo simulations (n = 100) were used

to estimate 99% significant level. For phase analysis, the morning

and the evening peak were recorded and converted into degrees.

Because the data are circular, large angles (.270u) were converted

to negative values (subtracting 360u).

Supporting Information

Figure S1 The effect of photoperiod on CCRt. Survival curves

showing recovery from coma of wild-type females (Hu) that were

developed in photoperiods 8–16 hr (n = 19–41). Median CCRt of

8–14 hr photoperiod is similar 13–15 min, while for 16 hr, the

median is 24 min (see text).

(TIF)

Figure S2 Comparison of CCRt in diapausing and non-

diapausing females. Survival curves showing recovery from coma

of wild-type females (Hu) following 12 days in diapause inducing

conditions. Following CCRt measurement the females were

dissected and the reproductive state was determined. Diapausing

(n = 82) and non-diapausing (n = 39) females show similar CCRt.

(TIF)

Figure S3 Fresh/dry weights of Drosophila under different

photoperiods. The fresh weight (top), the dry weight (middle) and

the water content (bottom) were measured in females (left bars)

and males (right bars) raised in long (16 hr) and short (8 hr) day.

Measurements are based on 4–5 replicate pools of 10 flies. The

error bars represent SE.

(TIF)

Figure S4 The effect of photoperiod on metabolite level. The

level of glycogen (top), free fatty acids (middle) and total protein

(bottom) was measured in female wild-type (HU) and mutant

(ClkJRK) flies, under long and short day. Samples were collected at

four different time points. Glycogen assays are based on 3–6 pools

of 10 flies each. Free fatty acids assays are based on 2–3 replicates

(10 flies each), and total protein 3–9 pools (10 flies each). Error

bars represent SE.

(TIF)

Figure S5 CCRt at different times of the day. Survival curves of

wild-type females (Hu) showing similar recovery time from coma at

different Zts. Females were developed at LD 12:12 (n = 44–65 flies).

(TIF)

Figure S6 Locomotory activity profiles of clock mutants. The

activity profiles of mutant female flies in long (left) and short (right)

day is shown, followed by one day in DD (n = 16–35 flies).

Experiment carried at 19.5uC, which was also used in the CCRt

experiments.

(TIF)

Figure S7 Predicted behaviour of long and short mutants under

external coincidence model. A: Assuming that mutants and WT

flies have the same oscillation waveform, that the waveform

remains unchanged under long and short photoperiods, the

scotophil and photophil phases of each strains may lie at different

time of the day (perL delayed compared to perS). B: Under long

days, perL mutants have a larger portion of their scotophil phase in

darkness compared to perS, that leads to a short day response

(better cold adapted than the other strains). This fits the hypothesis

shown in Figure 3. C: Under short-days, however, perS and WT

flies have the entire scotophil phase in darkness, and perS mutants

have in addition the largest part of the photophil phase during the

day. Therefore, perS mutants should be best winter-adapted. This

was not found in the experiments. Consequently, the external

coincidence model can only explain part of the results.

(TIF)
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