34 research outputs found

    TRIZ as Innovative Method in English Language Teaching

    Get PDF
    Learning English is critical because English is an international language, and it plays a significant role in everyone's life. English serves as a gateway to the world. Education is a tool that allows students to both acquire knowledge and develop their creative thinking skills. The purpose of this study is to investigate the benefits of TRIZ implementation as an innovative method for foreign language teaching and learning, in English lessons to improve students' writing and reading skills. An experimental group and a control group were compared within the framework of a quasi-experimental research design. In the experimental group, English lessons, reshaped within the framework of TRIZ, an innovative teaching method, were held for two months. In the control group, any teaching activities shaped within the framework of the TRIZ method were not carried out. A pre-test and a post-test were used to analyze the effectiveness of the TRIZ method on students' writing and reading skills and to compare the experimental and control groups. In addition, observations (students' interactions with the teacher and their views on the teaching method used) were made to evaluate the participants in both classes and to compare their similarities and differences. In summary, within the framework of this research, it was concluded that the application of the TRIZ method in English lessons improves students' reading and writing skills and can help bring an innovative perspective to English Language Teaching.

    Dynamic Changes in Circulating Endocrine FGF19 Subfamily and Fetuin-A in Response to Intralipid and Insulin Infusions in Healthy and PCOS Women

    Get PDF
    © Copyright © 2020 Ramanjaneya, Bensila, Bettahi, Jerobin, Samra, Aye, Alkasem, Siveen, Sathyapalan, Skarulis, Atkin and Abou-Samra. Background: The fibroblast growth factors (FGF) 19 subfamily, also referred to as endocrine FGFs, includes FGF19, FGF21, and FGF23 are metabolic hormones involved in the regulation of glucose and lipid metabolism. Fetuin-A is a hepatokine involved in the regulation of beta-cell function and insulin resistance. Endocrine FGFs and fetuin-A are dysregulated in metabolic disorders including obesity, type 2 diabetes, non-alcoholic fatty liver disease and polycystic ovary syndrome (PCOS). Our study was designed to examine the response of endocrine FGFs and fetuin-A to an acute intralipid, insulin infusion and exercise in PCOS and healthy women. Subjects and Measurements: Ten healthy and 11 PCOS subjects underwent 5-h saline infusions with a hyperinsulinemic-euglycemic clamp (HIEC) performed during the final 2 h. One week later, intralipid infusions were undertaken with a HIEC performed during the final 2 h. After an 8 week of exercise intervention the saline, intralipid, and HIEC were repeated. Plasma levels of endocrine FGFs and fetuin-A were measured. Results: Baseline fetuin-A was higher in PCOS women but FGF19, FGF21, and FGF23 did not differ and were unaffected by exercise. Insulin administration elevated FGF21 in control and PCOS, suppressed FGF19 in controls, and had no effects on FGF23 and fetuin-A. Intralipid infusion suppressed FGF19 and increased FGF21. Insulin with intralipid synergistically increased FGF21 and did not have effects on lipid-mediated suppression of FGF19 in both groups. Conclusion: Our study provides evidence for insulin and lipid regulation of endocrine FGFs in healthy and PCOS women, suggesting that FGF family members play a role in lipid and glucose metabolism. Clinical Trial Registration: www.isrctn.org, Identifier: ISRCTN42448814

    Effect of Intravenous Ketamine Infusion on Hemodynamics of Patients Undergoing Cesarean Delivery after Spinal Anaesthesia: A Randomized, Double-Blind, Controlled Trial

    Get PDF
    Objective:Hypotension is the most frequent side effect of intrathecal anaesthesia, with an incidence of more than 80%. Following neuraxial anaesthesia, perioperative shivering is a serious complication affecting 40-60% of patients undergoing surgery. This study aimed to determine the effectiveness of low-dose ketamine on blood pressure in patients undergoing cesarean delivery after spinal anaesthesia.Methods:We included 126 female patients undergoing cesarean deliveries, American Society of Anesthesiologists (ASA)-(II and III), and aged 21-40 selected from the outpatient clinics of the anaesthesia department. Patients were randomized to two groups; Group K (63 patients), who received 0.3 mg kg-1 of ketamine IV diluted to 10 mL, followed by an infusion of 0.1 mg kg-1 h-1. Group C (Controlled) (63 patients) received 10 mL of normal saline, followed by an infusion of 0.1 mL kg-1 h-1, which started before spinal anaesthesia.Results:Compared with the saline group, the average heart rate, blood pressure, and level of sedation were significantly higher in the ketamine group (P 0.05).Conclusion:Ketamine decreases the incidence of hypotension and shivering in patients undergoing spinal anaesthesia during cesarean delivery. In addition, it resulted in improved sedation for the mother and prolonged postoperative analgesia without neonatal illness

    An integrated multi-omic approach demonstrates distinct molecular signatures between human obesity with and without metabolic complications: a case–control study

    Get PDF
    Objectives: To examine the hypothesis that obesity complicated by the metabolic syndrome, compared to uncomplicated obesity, has distinct molecular signatures and metabolic pathways. Methods: We analyzed a cohort of 39 participants with obesity that included 21 with metabolic syndrome, age-matched to 18 without metabolic complications. We measured in whole blood samples 754 human microRNAs (miRNAs), 704 metabolites using unbiased mass spectrometry metabolomics, and 25,682 transcripts, which include both protein coding genes (PCGs) as well as non-coding transcripts. We then identified differentially expressed miRNAs, PCGs, and metabolites and integrated them using databases such as mirDIP (mapping between miRNA-PCG network), Human Metabolome Database (mapping between metabolite-PCG network) and tools like MetaboAnalyst (mapping between metabolite-metabolic pathway network) to determine dysregulated metabolic pathways in obesity with metabolic complications. Results: We identified 8 significantly enriched metabolic pathways comprising 8 metabolites, 25 protein coding genes and 9 microRNAs which are each differentially expressed between the subjects with obesity and those with obesity and metabolic syndrome. By performing unsupervised hierarchical clustering on the enrichment matrix of the 8 metabolic pathways, we could approximately segregate the uncomplicated obesity strata from that of obesity with metabolic syndrome. Conclusions: The data suggest that at least 8 metabolic pathways, along with their various dysregulated elements, identified via our integrative bioinformatics pipeline, can potentially differentiate those with obesity from those with obesity and metabolic complications

    Characteristic MicroRNAs Linked to Dysregulated Metabolic Pathways in Qatari Adult Subjects With Obesity and Metabolic Syndrome

    Get PDF
    BackgroundObesity-associated dysglycemia is associated with metabolic disorders. MicroRNAs (miRNAs) are known regulators of metabolic homeostasis. We aimed to assess the relationship of circulating miRNAs with clinical features in obese Qatari individuals.MethodsWe analyzed a dataset of 39 age-matched patients that includes 18 subjects with obesity only (OBO) and 21 subjects with obesity and metabolic syndrome (OBM). We measured 754 well-characterized human microRNAs (miRNAs) and identified differentially expressed miRNAs along with their significant associations with clinical markers in these patients.ResultsA total of 64 miRNAs were differentially expressed between metabolically healthy obese (OBO) versus metabolically unhealthy obese (OBM) patients. Thirteen out of 64 miRNAs significantly correlated with at least one clinical trait of the metabolic syndrome. Six out of the thirteen demonstrated significant association with HbA1c levels; miR-331-3p, miR-452-3p, and miR-485-5p were over-expressed, whereas miR-153-3p, miR-182-5p, and miR-433-3p were under-expressed in the OBM patients with elevated HbA1c levels. We also identified, miR-106b-3p, miR-652-3p, and miR-93-5p that showed a significant association with creatinine; miR-130b-5p, miR-363-3p, and miR-636 were significantly associated with cholesterol, whereas miR-130a-3p was significantly associated with LDL. Additionally, miR-652-3p’s differential expression correlated significantly with HDL and creatinine.ConclusionsMicroRNAs associated with metabolic syndrome in obese subjects may have a pathophysiologic role and can serve as markers for obese individuals predisposed to various metabolic diseases like diabetes

    Corrigendum: Association of Complement-Related Proteins in Subjects With and Without Second Trimester Gestational Diabetes (Front. Endocrinol., (2021), 12, (641361), 10.3389/fendo.2021.641361)

    Get PDF
    In the original article, there was an error. One of the funders wasmissed out in the Acknowledgements. A correction has been made to the Acknowledgements section. “The authors would like to thank Qatar Metabolic Institute, Medical Research Center, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar for supporting the study. And Medical Research Center, Hamad Medical Corporation for the article processing fees support”. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated

    Association of Complement-Related Proteins in Subjects With and Without Second Trimester Gestational Diabetes.

    Get PDF
    Gestational Diabetes Mellitus (GDM) development is related to underlying metabolic syndrome that is associated with elevated complement C3 and C4. Elevated C3 levels have been associated with preeclampsia and the development of macrosomia. This case-control study included 34 pregnant women with GDM and 16 non-diabetic (ND) women in their second trimester. Complement-related proteins were measured and correlated with demographic, biochemical, and pregnancy outcome data. GDM women were older with a higher BMI (p<0.001); complement C3, C4 and Factor-H were significantly elevated (p=0.001, p=0.05, p=0.01, respectively). When adjusted for age and BMI, Complement C3 (p=0.04) and Factor-H (p=0.04) remained significant. Partial correlation showed significant correlation between C4 with serum alanine aminotransferase (ALT) (p<0.05) and 2 term diastolic blood pressure (p<0.05); Factor-H and C-reactive protein (CRP; p<0.05). Pearson bivariate analysis revealed significant correlations between C3, C4, and Factor-H and CRP; p<0.05; C3 and gestational age at delivery (GA; p<0.05); C4 and ALT and second-trimester systolic blood pressure (STBP) (p=0.008 and p<0.05, respectively); Factor-H and glycated hemoglobin (HbA1c) (p<0.05). Regression analysis showed that the elevation of C3 could be accounted for by age, BMI, GA and CRP, with CRP being the most important predictor (p=0.02). C4 elevation could be accounted for by ALT, CRP and STBP. CRP predicted Factor-H elevation. The increased C3, C4 and Factor-H during the second trimester of pregnancy in GDM are not independently associated with GDM; inflammation and high BMI may be responsible for their elevation. The elevation of second trimester C3 in GDM is associated with earlier delivery and further work is needed to determine if this is predictive

    Etude des effets des hétérogénéités spatiales tridimensionnelles des nuages sur les observables lidar et radar embarqués sur plateforme satellite

    No full text
    Clouds display complex three-dimensional (3D) variability in their horizontal and vertical geometric, optical and microphysical properties. Generally and for practical reasons, the clouds are supposed to be homogeneous and parallel in the algorithms for calculating the lidar / radar signal (direct problem) and in the algorithms for the retrieval of the properties of the clouds (inverse problem). The objective of this work is to evaluate the effects of cloud heterogeneity and multiple scattering on the characteristics measured directly by the lidar / radar. In this study, we only deal with the sources of errors related to the direct problem. Our assessments are based on random sampling and comparison between the average profiles of 3D clouds and 1D equivalent plane-parallel clouds. Therefore, we developed and validated a tool called the lidar / radar / Doppler radar simulator (McRALI). The latter tool is based on the 3DMCPOL model (Cornet et al., 2010). The 3D clouds, used in the current study, were generated by the 3D cloud field generator (3DCLOUD_V2) (Szczap et al., 2014). The tested McRALI code revealed good coherence with earlier published studies. We studied the effects of 3D cloud heterogeneity on three scales 333 m, 1 km and 5 km. The results obtained showed that the biases on the backscattering coefficient β, on the integrated backscattering coefficient γand on the depolarization factor δ increase with increasing the scale and the optical thickness. The study of a cirrus cloud of ice crystals showed that the average profiles of β as well as the γ are statistically equal to the 333 m scale. On the contrary, the biases are statistically significant at 1 km scale. The bias on δ is statistically significant for both scales. The tests carried out on the EarthCARE Doppler CPR radar measurements showed that there is a difference in the measured Doppler velocity close to the discontinuity in a discontinuous cloud. This difference is due to the degree of the discontinuity, the optical, the geometrical properties of the cloud and the geometry of the radar system. This work contributes to better understanding of the effects of cloud heterogeneity on the characteristics measured directly by the lidar / radar.Les nuages montrent des variabilités tridimensionnelles complexes (3D) dans leurs propriétés géométriques, optiques et microphysiques horizontales et verticales. Généralement et pour des raisons pratiques, les nuages sont supposés être homogènes et parallèles dans les algorithmes de calcul du signal lidar/radar (problème direct) et dans les algorithmes de récupération des propriétés des nuages (problème inverse). L'objectif de ce travail est d'évaluer les effets de l'hétérogénéité des nuages et de la diffusion multiple sur des caractéristiques mesurées directement par le lidar/radar, nous ne traitons que les sources d'erreurs liées au problème direct. Nos évaluations sont basées sur l'échantillonnage aléatoire et sur la comparaison entre les profils moyens des nuages 3D et des nuages 1D équivalents plan-parallèles. Nous avons développé et validé un outil à cet effet. Le simulateur lidar/radar/radar Doppler (McRALI). Il est basé sur le modèle 3DMCPOL (Cornet et al., 2010). Les nuages 3D utilisés sont générés par le générateur de champs de nuages 3D (3DCLOUD_V2) (Szczap et al., 2014). Les comparaisons avec des publications et des codes de référence, ont montré de bonnes cohérences entre le code McRALI et les résultats publiés. On a étudié les effets de l'hétérogénéité 3D des nuages sur trois échelles 333 m, 1 km et 5 km. Les résultats obtenus ont montré que les biais sur le coefficient de rétrodiffusion β, sur le coefficient de rétrodiffusion intégré γ et sur le facteur de dépolarisation δ augmentent avec l’augmentation de l’échelle et l’épaisseur optique. L’étude sur un nuage de type cirrus de cristaux de glace plaquette ont montré que les profils moyens de β ainsi que de γ sont statistiquement égaux à l’échelle de 333 m. Au contraire, à l’échelle de 1 km les biais sont statistiquement significatifs. Le biais sur δ est statistiquement significatif pour les deux échelles. Les tests sur les mesures de radar CPR Doppler EarthCARE ont montré qu’il y a un écart sur la vitesse Doppler mesuré proche de la discontinuité dans un nuage discontinu, cet écart dépond le degré de la discontinuité, les propriétés optiques et géométriques du nuage et la géométrie du système radar. Ce travail contribue à une meilleure compréhension des effets de l'hétérogénéité des nuages sur les caractéristiques mesurées directement par le lidar / radar

    Study of the effects of three-dimensional spatial heterogeneities of clouds on lidar and radar observables embedded on a satellite platform

    No full text
    Les nuages montrent des variabilités tridimensionnelles complexes (3D) dans leurs propriétés géométriques, optiques et microphysiques horizontales et verticales. Généralement et pour des raisons pratiques, les nuages sont supposés être homogènes et parallèles dans les algorithmes de calcul du signal lidar/radar (problème direct) et dans les algorithmes de récupération des propriétés des nuages (problème inverse). L'objectif de ce travail est d'évaluer les effets de l'hétérogénéité des nuages et de la diffusion multiple sur des caractéristiques mesurées directement par le lidar/radar, nous ne traitons que les sources d'erreurs liées au problème direct. Nos évaluations sont basées sur l'échantillonnage aléatoire et sur la comparaison entre les profils moyens des nuages 3D et des nuages 1D équivalents plan-parallèles. Nous avons développé et validé un outil à cet effet. Le simulateur lidar/radar/radar Doppler (McRALI). Il est basé sur le modèle 3DMCPOL (Cornet et al., 2010). Les nuages 3D utilisés sont générés par le générateur de champs de nuages 3D (3DCLOUD_V2) (Szczap et al., 2014). Les comparaisons avec des publications et des codes de référence, ont montré de bonnes cohérences entre le code McRALI et les résultats publiés. On a étudié les effets de l'hétérogénéité 3D des nuages sur trois échelles 333 m, 1 km et 5 km. Les résultats obtenus ont montré que les biais sur le coefficient de rétrodiffusion β, sur le coefficient de rétrodiffusion intégré γ et sur le facteur de dépolarisation δ augmentent avec l’augmentation de l’échelle et l’épaisseur optique. L’étude sur un nuage de type cirrus de cristaux de glace plaquette ont montré que les profils moyens de β ainsi que de γ sont statistiquement égaux à l’échelle de 333 m. Au contraire, à l’échelle de 1 km les biais sont statistiquement significatifs. Le biais sur δ est statistiquement significatif pour les deux échelles. Les tests sur les mesures de radar CPR Doppler EarthCARE ont montré qu’il y a un écart sur la vitesse Doppler mesuré proche de la discontinuité dans un nuage discontinu, cet écart dépond le degré de la discontinuité, les propriétés optiques et géométriques du nuage et la géométrie du système radar. Ce travail contribue à une meilleure compréhension des effets de l'hétérogénéité des nuages sur les caractéristiques mesurées directement par le lidar / radar.Clouds display complex three-dimensional (3D) variability in their horizontal and vertical geometric, optical and microphysical properties. Generally and for practical reasons, the clouds are supposed to be homogeneous and parallel in the algorithms for calculating the lidar / radar signal (direct problem) and in the algorithms for the retrieval of the properties of the clouds (inverse problem). The objective of this work is to evaluate the effects of cloud heterogeneity and multiple scattering on the characteristics measured directly by the lidar / radar. In this study, we only deal with the sources of errors related to the direct problem. Our assessments are based on random sampling and comparison between the average profiles of 3D clouds and 1D equivalent plane-parallel clouds. Therefore, we developed and validated a tool called the lidar / radar / Doppler radar simulator (McRALI). The latter tool is based on the 3DMCPOL model (Cornet et al., 2010). The 3D clouds, used in the current study, were generated by the 3D cloud field generator (3DCLOUD_V2) (Szczap et al., 2014). The tested McRALI code revealed good coherence with earlier published studies. We studied the effects of 3D cloud heterogeneity on three scales 333 m, 1 km and 5 km. The results obtained showed that the biases on the backscattering coefficient β, on the integrated backscattering coefficient γand on the depolarization factor δ increase with increasing the scale and the optical thickness. The study of a cirrus cloud of ice crystals showed that the average profiles of β as well as the γ are statistically equal to the 333 m scale. On the contrary, the biases are statistically significant at 1 km scale. The bias on δ is statistically significant for both scales. The tests carried out on the EarthCARE Doppler CPR radar measurements showed that there is a difference in the measured Doppler velocity close to the discontinuity in a discontinuous cloud. This difference is due to the degree of the discontinuity, the optical, the geometrical properties of the cloud and the geometry of the radar system. This work contributes to better understanding of the effects of cloud heterogeneity on the characteristics measured directly by the lidar / radar
    corecore