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Background: Obesity-associated dysglycemia is associated with metabolic disorders.
MicroRNAs (miRNAs) are known regulators of metabolic homeostasis. We aimed to
assess the relationship of circulating miRNAs with clinical features in obese Qatari
individuals.

Methods: We analyzed a dataset of 39 age-matched patients that includes 18 subjects
with obesity only (OBO) and 21 subjects with obesity and metabolic syndrome (OBM). We
measured 754 well-characterized human microRNAs (miRNAs) and identified differentially
expressed miRNAs along with their significant associations with clinical markers in these
patients.

Results: A total of 64 miRNAs were differentially expressed between metabolically healthy
obese (OBO) versus metabolically unhealthy obese (OBM) patients. Thirteen out of 64
miRNAs significantly correlated with at least one clinical trait of the metabolic syndrome.
Six out of the thirteen demonstrated significant association with HbA1c levels; miR-331-
3p, miR-452-3p, and miR-485-5p were over-expressed, whereas miR-153-3p, miR-182-
5p, and miR-433-3p were under-expressed in the OBM patients with elevated HbA1c
levels. We also identified, miR-106b-3p, miR-652-3p, and miR-93-5p that showed a
significant association with creatinine; miR-130b-5p, miR-363-3p, and miR-636 were
significantly associated with cholesterol, whereas miR-130a-3p was significantly
associated with LDL. Additionally, miR-652-3p’s differential expression correlated
significantly with HDL and creatinine.

Conclusions: MicroRNAs associated with metabolic syndrome in obese subjects may
have a pathophysiologic role and can serve as markers for obese individuals predisposed
to various metabolic diseases like diabetes.
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INTRODUCTION

The worldwide rise in obesity and its strong association with
metabolic diseases have elicited interest in the underlying
mechanisms. According to the WHO report 2021, worldwide
obesity has nearly tripled since 1975 (1). In 2016, more than 1.9
billion adults, 18 years and older, were overweight and over 650
million were obese (1). The global obesity epidemic is causing an
alarming incidence of metabolic disorders. Obesity can be
considered a growing epidemic that is associated with
hyperglycemia (elevated blood glucose levels >7.0 mmol/L or
hemoglobin that is glycosylated HbA1c > 6.5%), insulin
resistance, and dyslipidemia (characterized by elevated
cholesterol, low-density lipoproteins (LDL) and decreased
serum high-density lipoproteins (HDL)), collectively referred
to as metabolic syndrome (2). However, there are subjects with
an elevated body mass index (BMI) who do not progress to
metabolic syndrome; they are generally labeled as “Metabolically
Healthy Obese” (2–7), they have obesity only (OBO); but the
protective mechanisms are unknown. Body fat distribution is
suspected to play an important role (8). High liver fat content
and predominantly abdominal adiposity were shown to be linked
to the metabolically unhealthy obesity phenotype (obesity with
metabolic syndrome or OBM), whereas subcutaneous adiposity
is associated with the metabolic healthy obesity phenotype (9,
10). Over the past years, some biological mechanisms and
phenotypic characteristics have been identified that
differentiate individuals with OBO from OBM (11). The
concept of OBO may serve as a model to better understand the
pathways and mechanisms linking obesity to metabolic diseases.
Therefore, considering the potentially devastating impact of
obesity, there is urgency in elucidating underlying mechanisms
and identifying novel markers for risk stratification and targeted
early treatment.

Impaired adipose tissue metabolism and function are central
to the pathogenesis of obesity and associated metabolic
disorders. MicroRNAs (miRNAs) play a crucial role in
regulating gene expression and are likely to have an essential
function in the pathogenesis of obesity and metabolic disorders
(12). MicroRNAs are small non-coding RNAs participating in
the post-transcriptional regulation of genes by negatively
regulating them. Evidence is accumulating that circulating
miRNAs, released by many types of cells act as a new class of
endocrine factors. MiRNAs might serve as endocrine and
paracrine messengers that facilitate communication between
donor cells and tissues with receptor cells or target tissues,
thereby potentially having important roles in metabolic organ
crosstalk (13). In response to various pathophysiological
conditions, miRNAs can be released by cells into their
environment transported by different extracellular fluids,
including blood, and could serve as biomarkers of diverse
diseases including diabetes and related metabolic disorders.
The role of miRNAs as key regulators of metabolic
homeostasis has been intensely explored over the last decade.
Brando et al. have collated the significant circulating miRNAs
that are altered in obese subjects, where microRNAs such as
miR-92a-3p, miR-122, miR-122-5p, miR-140-5p, miR-142-3p,
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miR-151a, miR-155, miR-222, and miR-15a have been shown to
be upregulated. On the other hand miR-15a, miR-26a, miR-30b,
miR-30c, miR-125b, miR-126, miR-139-5p, miR-144-5p, miR-
146a, miR-150, miR-223, and miR-376a are reported to be
downregulated in obese adults when compared to healthy lean
individuals (14). Controversially, the role of miR-15b remains
obscure where it has been upregulated in one study (15) while
another group reported downregulation of miR-15b in obese
subjects compared to lean counterparts (16). Although obesity is
linked to differentially expressed miRNAs, they additionally
contribute to various metabolic disorders including
hypertension, hepatic steatosis, and insulin resistance by
influencing the metabolism of cholesterol, LDL (mir-26a and
mir-15b), and elevation of circulating glucose (mir-140-5p, miR-
142-3p, miR-222, and mir125b) that eventually glycosylates
hemoglobin (HbA1c) respectively (12, 14, 17–21).

Here, we aimed to unravel the associations between the
metabolic parameters in obese individuals with miRNA
profiling. We identified 64 significantly differentially expressed
miRNAs of which 36 were down-regulated and 28 were up-
regulated. By undertaking an association discovery approach, we
identified the expression of eleven out of the 36 down-regulated
miRNAs and two of the 28 up-regulated miRNAs in our patient
dataset were significantly correlated with at least one clinical trait
of relevance to metabolic syndrome. The down regulated
miRNAs include miR-106b-3p, miR-103a-3p, miR-130b-5p,
miR-153-3p, miR-182-5p, miR-331-3p, miR-363-3p, miR-433-
3p, miR-636, miR-652-3p and miR-93-5p whereas miR-452-3p
and miR-485-5p were upregulated. Several of the miRNAs in
OBM patients were significantly dysregulated and associated
with increased levels of HbA1c and cholesterol. These include
miR-130b-5p, miR-153-3p, miR-182-5p, miR-331-3p, miR-363-
3p, miR-433-3p, miR-452-3p, miR-485-5p and miR-636.
Figure 1 provides an outline of our experimental design.
MATERIALS AND METHODS

Study Design
The participants were recruited at the Qatar Metabolic Institute,
Hamad Medical Corporation, Doha, Qatar. The study protocol
was approved by the institutional review board (IRB) of Hamad
Medical Corporation (HMC, IRB protocol #16245/16) and all
participants provided written informed consent. Obesity was
determined according to CDC guidelines. Both Class 1 (BMI of
35 to 40) and Class 2 (BMI > NA). Both Class 1 and Class 2
obesity were referred to as morbid obesity. A total of 120, male
and female participants aged between 18 to 65 years with morbid
obesity (BMI≥35 kg/m2) were included. Individuals such as
pregnant females and those with identified chronic disease or
terminal illness were excluded from the study. The subjects were
classified into two groups those without metabolic syndrome
(OBO) and with metabolic syndrome (OBM) components of the
metabolic syndrome; obesity PLUS any 2 of the following:
triglycerides ≥ 150 mg/dL (1.7 mmol/L), HDL< 40 mg/dL
(1.03 mmol/L) in men or< 50 mg/dL (1.29 mmol/L) in
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women, blood pressure ≥ 130/85 mmHg and fasting blood
glucose ≥ 110 mg/dL (5.6 mmol/L) (22). An additional, filter
of age and BMI matching yielded 39 subjects that consisted of 18
OBO subjects and 21 OBM subjects. Among the 18 OBO group
subjects, none of the subjects had hyperglycemia, 2 individuals
were identified with hypertension, 2 with mildly elevated
triglycerides, and 6 with a borderline decrease in HDL. Venous
blood samples were collected from these 39 subjects for total
miRNA isolation.

Participants Characteristics
Height and weight were measured in light clothing without
shoes. Fasting blood samples were taken between 7-9 AM after
at least 12h of fasting. For serum collection, whole blood was
collected via BD Vacutainer Serum Separation Tubes (BD
Biosciences, Franklin Lakes, NJ, USA). Blood samples were
kept at room temperature for 30-60 minutes and then
centrifuges at 3000g for 10 minutes. Following centrifugation,
serum was separated and immediately stored at -80°C for
further use.

Blood biochemistry was performed at the HMC clinical
laboratory which has been accredited by the College of
American Pathologists (CAP). Measurements included HbA1c
with Turbidimetric Inhibition Immunoassay (TINIA Roche
Diagnostics, Mannheim, Germany), glucose by enzymatic
reference method with hexokinase (Cobas 6000, Roche
Diagnostics International, Switzerland), Total cholesterol,
triglycerides, and high-density lipoprotein (HDL) cholesterol
Frontiers in Endocrinology | www.frontiersin.org 3
levels were measured enzymatically using a Synchron LX20
analyzer (Beckman-Coulter, High Wycombe, UK).

RNA Isolation and Quality Control
Whole blood (2.5 ml) was collected into PaXgene Blood RNA
Tubes (PreAnalytix). The tubes were inverted 8-10 times then
placed at room temperature for at least 2 hours, frozen at -80°C,
thawed overnight, then total RNA was isolated with a PAXgene
Blood RNA Kit including the DNase Set (Qiagen). The
concentrations and purity of the RNA samples were evaluated
spectrophotometrically (Nanodrop ND-1000, Thermo,
Wilmington, DE USA). The RNA isolation process was
validated by analyzing the integrity of several RNAs with the
RNA 6000 Nano Chip Kit (Agilent). The presence of the small
RNA fraction was confirmed by the Agilent Small RNA
Kit (Agilent).

MicroRNA (miRNA) Profiling
The expression levels of 754 miRNAs were profiled using the
TaqMan OpenArray Human MicroRNA panels (PN: 4470189;
Life Technologies Forster City, CA, USA) on a QuantStudio 12K
Flex instrument. For all experimental groups, 3 μL (~10 ng) of
total RNA was used for reverse transcription (RT) reactions
using MegaPlex RT Primers Human Pool Set v3.0 (PN: 4444745;
Pool A v2.1 and Pool B v3.0) according to the manufacturer’s
optimized protocol for low sample input for profiling human
microRNA using the OpenArray platform on BioRad c1000
Touch thermal cycler. No-template controls were included.
Pre-amplification of RT products was performed using a 5 μL
RT reaction combined with the matching Megaplex PreAmp
Primer Pool A v2.1 or B v3.0 and amplified using the thermal
cycler (Applied biosystems). The pre-amplified products were
diluted at 1:40 in 0.1x TE pH 8. For each experimental set, 10 μL
of the diluted products were combined to give a total of 40 μL
pooled sample. For both Pool A and Pool B groups, 22.5 μL of the
pooled products were combined with an equivalent volume of
TaqMan OpenArray Real-Time Master Mix and aliquoted into a
96-well plate. Then, 5 μL from each well were then transferred
into a 384 well plate for loading onto OpenArray plates using an
AccuFill robotic system. The OpenArray plates were run on a
QuantStudio 12K Flex instrument (Life Technologies) and the
raw data files were imported and analyzed using the DataAssist
software (Life Technologies). Failed reactions were excluded
from analysis and undetermined CT values for samples sets
determined to have good amplifications were assigned a
threshold value of 40, defining low abundance or absence of
miRNA expression. Global mean normalization was used to
calculate relative fold change for the miRNA expression.

Statistics
Statistical characteristics of clinical measurements were
calculated by comparing the OBO and OBM samples using R
v4.2.0 (23). The normality of the measurements was tested using
Anderson-Darling test using nortest v1.0.4 package (24). The
Student’s t-test was used to calculate the p-value of the normally
distributed measurements. For the remaining measurements,
Mann-Whitney test from the base package in R was used.
FIGURE 1 | The experimental study design. BMI, Body Mass Index; OBO,
Obesity with no metabolic disease; OBM, Obesity with metabolic diseases.
To determine the fold-changes of miRNA expression between the OBO vs
OBM patients, we used the Relative Quantification (RQ) measure. We
considered those miRNAs to be differentially expressed for which |log2(RQ)| >
2 and significance threshold p< 0.05. This resulted in the identification of 64
differentially expressed miRNAs. Out of the 64 miRNAs, there were 13
miRNAs whose expression correlated with at least one clinical trait of
relevance for metabolic syndrome (including HBA1c, Creatinine, Cholesterol,
LDL, and HDL).
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P-values were not corrected for false discovery rate (FDR) owing
to the small sample size.

The miRNA expression levels were measured via raw CRT

values, which are inversely proportional to miRNA expression
i.e., the higher the CRT value lower the expression of the
circulating miRNA (25). However, current miRNA microarray
platforms might not have enough miRNAs which are stably
expressed as indicated in (26). Thus, to measure fold-changes in
Frontiers in Endocrinology | www.frontiersin.org 4
miRNA expression, we determined the Relative Quantification
(RQ) values using the standard formula (27). An RQ value
showcased the fold-change (FC) of a specific miRNA in two
populations. An RQ=1 indicated that a specific miRNA was not
differentially expressed in the OBO versus OBM samples.
Otherwise, if the |log2(RQ)| > 2 and significance threshold (p<
0.05), then the miRNA was differentially expressed between the
two groups as observed in Figure 2A.
A

B

FIGURE 2 | (A) Volcano Plot highlighting the differentially expressed microRNAs. The red-colored microRNAs are over-expressed in OBM versus OBO while the
blue-colored microRNAs are under-expressed. Here ‘RQ’ is equivalent to the fold-change of a particular miRNA (Wang, Wang, and Xi 2011) and is ∝ mean -DCRT

values. (B) The mean -DCRT values for the differentially expressed miRNAs for the OBM and OBO groups respectively. The -DCRT values are ∝ to miRNA
expression, where the higher -DCRT value (or CRT value) corresponds to higher miRNA expression levels. This is further reflected in the logRQ values which are
equivalent to fold-change in the expression of individual miRNA. Here ‘logPval’ corresponds to -log10 (P-value).
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Visualizations
The volcano and scatter plots were constructed using the ggplot2
v3.3.6 package in R. The visualization of the miRNA expression
matrix was performed using the ComplexHeatmap v2.12.0
package (28) in R.

Correlation Analysis
We performed a set of correlation analyses, where we correlated
the expression (-CRT value when available) of each differentially
expressed miRNAs with the different clinical traits of relevance
to metabolic syndrome including HBA1c, Creatinine,
Cholesterol, LDL, and HDL. The correlations were estimated
using the ‘cor.test’ function from the stats package using the
Pearson correlation method. The correlations between
differentially expressed miRNAs and clinical traits were
visualized using the corrplot v0.92 package (https://github.
com/taiyun/corrplot).

Additionally, we visualize the significantly correlated
miRNAs’ expression versus individual clinical trait values for
the OBO and OBM patients through a scatter plot. We fit a linear
regression line along with confidence intervals using the
‘geom_smooth’ function and annotate the Pearson correlation
scores and p-values in the plot using the ‘stat_cor’ function from
the ggplot2 package.

MiRNA-mRNA Interaction Network
We used the microRNA Data Integration Portal, mirDIP v4.1
(http://ophid.utoronto.ca/mirDIP/), which provides nearly 152
million human microRNA–target predictions collected from 30
different resources (21). The mirDIP integrative score was
constructed by taking a statistical consensus from the
predictions available through myriad resources and was
assigned to each unique miRNA-target interaction to provide a
unified measure of confidence. The integrated scores range, 0 to
1, was used; higher scores correspond to stronger evidence of
potential interaction between miRNA and target gene; the target
genes were thus identified.

Pathway Enrichment Analysis
The mRNAs which were identified to be regulated by
the differentially expressed miRNAs were then utilized in
an overexpression analysis framework. We used the
ConsensusPathDB (29) web portal (http://cpdb.molgen.mpg.de/)
as utilized in (30–34) to identify significantly enriched pathways
choosing the PID (http://pid.nci.nih.gov/) and KEGG (https://
www.genome.jp/kegg/pathway.html) database. We also used the
ConsensusPathDB web-portal to determine the significantly
enriched GO terms. The significantly enriched pathways and
GO terms were determined using a hypergeometric test.

The hypergeometric test was performed as described
below. Let the total number of genes associated with our
differentially expressed miRNAs be n. Out of these n, say k
genes are part of a pathway (p). This pathway (p) consists of a
total of K genes. The total number of background genes (or all
protein-coding genes in humans) be N. Then, the probability
of significance of the pathway can be determined by the
Frontiers in Endocrinology | www.frontiersin.org 5
hypergeometric test as follows:

P pð Þ =  

K

n

 !
N − K

n − k

 !

N

n

 !

where(
N

n
)represents the combination function (35).

RESULTS

Clinical Characteristics
The clinical characteristics of the study subjects are summarized
in Table 1. The clinical traits that were significantly different
between the two groups include HbA1c (p=0.002), triglycerides
(p=0.001), high-density lipoprotein (HDL, p=0.008), glucose
(p=0.009), and insulin (p=0.05). Other important clinical traits
which were not significantly different between the two sets
include clinical variables such as creatinine, low-density
lipoprotein (LDL), and cholesterol.

Differential Expression Analysis
We identified a total of 64 miRNAs to be differentially expressed
between the OBO and OBM groups (Figures 2A, B and
Supplement Table 1) of which 36 miRNAs were down-
regulated and 28 were up-regulated in the OBM patients
when compared to the metabolically healthy obese (OBO)
patients (Figure 2A). Specific miRNAs; miR-873-5p (-DCRT =
1.62), miR-9-3p (-DCRT = 1.91), mir-708-5p (-DCRT = 1.96)
were significantly up-regulated in OBM (had higher mean
-DCRT) in comparison to OBO patients (Figure 2B and
Supplementary Table 1). On the contrary, miRNAs; miR-
100-3p (-DCRT = -9.18), miR-486-5p (-DCRT = -5.16) and
miR-92a-3p (-DCRT = -4.76), were among the most
significantly downregulated miRNAs in OBM versus
OBO patients.

Correlations With Metabolic Syndrome
Relevant Clinical Markers
We next performed a set of correlation analyses, where we
correlated the expression (-CRT value when the measurement
was available) of each differentially expressed miRNAs with
clinical lab traits of relevance to metabolic syndrome including
HbA1c, creatinine, cholesterol, LDL, and HDL. 11 out of 36
down-regulated miRNAs and 2 out of 28 up-regulated miRNAs
correlated significantly (p< 0.05) with at least one of the clinical
lab traits (Figure 3A). The correlation values across these 13
miRNAs and 5 clinical traits are summarized in Table 2. As
depicted in Figure 3A the miRNAs miR-153-3p, miR-182-5p,
and miR-433-3p correlated negatively, while miR-331-3p, miR-
452-3p, and miR-485-5p demonstrated a positive correlation
with HbA1c. Interestingly, the trend for miRNAs: miR-153-3p,
miR-182-5p, and miR-433-3p, the -CRT values decreased linearly
with higher (dysregulated) levels of HbA1c (Figure 3B).
July 2022 | Volume 13 | Article 937089
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This trend was distinct for the OBM patients, suggesting the loss
of expression of these miRNAs in OBM patients was significantly
related to increased (↑) HbA1c levels. Similarly, from Figure 3B
for HbA1c, we could also observe another trend for miRNAs:
miR-331-3p, miR-452-3p, and miR-485-5p. The -CRT values of
these miRNAs went significantly up i.e., these miRNAs were
significantly over-expressed in OBM patients with increased
HbA1c levels.

We further identified that miRNAs: miR-106-3p, miR-652-
3p, and miR-93-5p were significantly correlated with
creatinine levels of patients in our dataset, and miRNAs:
miR-130b-5p, miR-363-3p, and miR-636 were significantly
associated with the cholesterol levels of patients as observed
in Figure 3. However, the ability to distinguish OBM patients
from OBO patients through the -CRT values of these miRNAs
was not as stark as of those miRNAs associated with HBA1C
(see Figures 3D, C respectively). This can also be attributed to
the fact that creatinine and cholesterol levels were not
significantly different between the two groups as indicated in
Table 1. We also identified a miRNA, mir-652-3p, that was
significantly negatively correlated with LDL (R = -0.34, see
Figure 3E). Interestingly, the majority of OBM patients had
lower LDL values as well as higher expression of mir-652-3p,
and the majority of OBO patients had higher LDL values with
lower expression of this miRNA. Lastly, we observe a
significant negative correlation between mir-130a-3p
expression and the clinical trait HDL (R = -0.35, see
Figure 3F) with no clear distinction between the OBM and
OBO groups.

We performed a Student’s t-test to determine whether the
expression values of the 13 miRNAs of interest were significantly
different between the males (Gender = 0) and females (Gender =
1) or smokers (Smoking 1 = Yes) versus non-smokers (Smoking
0 = No) in our dataset as illustrated in Figure 4. From Figure 4A,
we observed that miR-106b-3p and miR-652-3p had significantly
Frontiers in Endocrinology | www.frontiersin.org 6
different expressions in males versus females, where both these
miRNAs had lower expression in males when compared to
females. Hence the difference in the -CRT values are positive
(D-CRT > 0) as indicated in Figure 4A. However, for each of
these miRNAs, there is no clear segregation of the expression of
the miRNA between the OBO versus OBM male patients
(Gender = 0) or female patients (Gender = 1) as observed in
Figure 4B. This suggests that gender does not really have an
impact on the differential expression of these miRNAs (miR-
106b-3p and miR-652-3p) between the OBO and OBM
patient groups.

From Figure 4C, we observe that miR-106b-3p has higher
expression in patients who don’t smoke (0 = No) when
compared to patients who smoke (1 = Yes) and the majority of
the smokers (4 out of 6) belong to the OBM category. While
miR-106b-3p is differentially expressed w.r.t. smoking status,
there is no clear segregation of its expression between OBO and
OBM groups, for patients who don’t smoke. Moreover, owing to
the small sample size of patients with a positive smoking status (6
patients only), it is imperative not to draw strong conclusions.
However, for a larger population size smoking would be a
covariate to regress out when determining differentially
expressed miRNAs for the phenotype of interest (i.e. OBO vs
OBM patients).

Mechanistic Insights from miRNA-mRNA
Networks
We used the mirDIP database to extract information about target
mRNAs which can be regulated by the differentially expressed
miRNAs with significant associations with clinical traits. We use
stringent cutoffs including a minimum of 10 resources and an
integrated score of at least 0.75 to retain a potential interaction
between miRNA and the target gene. This resulted in a total of
398 interactions between the seven (out of the 13) differentially
expressed miRNAs and 378 target genes. Interestingly, we
TABLE 1 | Clinical and biochemical traits of the study subjects.

Feature OBO OBM P
Value

Age (years) 38.06 ± 4.21 40.52 ± 7.26 0.283
Females (N) 11 9
Males (N) 7 12
Height (cm) 167.4 ± 11.9 170.8 ± 9.6 0.370
Weight (kg) 113.4 ± 19.6 110.9 ± 27.6 0.782
BMI (kg/m2) 40.0 ± 4.5 39.6 ± 3.0 0.746
Smoking (%) 6.0 33.0
HbA1c (%) 5.5 ± 0.27 7.02 ± 1.9 0.002
TG (mmol/L) 1.39 ± 0.48 2.65 ± 1.52 0.001
Cholesterol (mmol/L) 4.9 ± 1.1 4.8 ± 1.1 0.855
LDL (mmol/L) 2.8 ± 1.3 2.6 ± 1.1 0.728
HDL (mmol/L) 1.5 ± 0.7 1.0 ± 0.3 0.008
Glucose (mmol/L) 5.2 ± 0.6 7.4 ± 3.4 0.009
Creatinine (mmol/L) 67.5 ± 14.1 65.3 ± 14.1 0.563
Insulin (miU/mL) 19.0 ± 13.3 27.6 ± 13.2 0.053
CRP (mg/L) 12.8 ± 12.5 7.1 ± 4.5 0.064
ALT (U/L) 20.7 ± 11.6 36.5 ± 35.1 0.063
AST (U/L) 18.8 ± 9.6 23.6 ± 15.0 0.251
July 2022 | Volume 13 | Article
OBO (obesity only), and OBM (obesity with metabolic syndrome). Significance was determined by the Student’s t-test.
937089

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Mir et al. MicroRNAs Dysregulated in Obese Qataris
TABLE 2 | Pearson correlation coefficients of the clinical traits associated with metabolic syndrome with the miRNA expression of relevant differentially expressed
miRNAs.

Diff MiRNAs HBA1c Creatinine CHOLESTROL HDL LDL

miR-106b-3p 0.161 -0.436 -0.0776 -0.182 0.001
miR-130a-3p -0.0913 -0.161 -0.309 0.0669 -0.351
miR-130b-5p -0.111 -0.026 -0.388 -0.0154 -0.28
miR-153-3p -0.372 0.219 -0.115 0.168 -0.152
miR-182-5p -0.327 -0.0811 -0.225 0.0626 -0.229
miR-331-3p 0.484 -0.0371 0.0247 -0.197 0.0653
miR-363-3p 0.0575 -0.0793 -0.338 -0.064 -0.268
miR-433-3p -0.395 0.0775 -0.13 -0.0304 -0.113
miR-452-3p 0.456 -0.059 0.0267 -0.183 0.0224
miR-485-5p 0.555 0.0405 0.221 -0.0822 0.152
miR-636 -0.282 -0.103 -0.393 -0.0614 -0.337
miR-652-3p 0.0627 -0.383 -0.00376 -0.342 0.0976
miR-93-5p -0.0617 -0.437 -0.033 -0.231 0.0828
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The bold values represent strong correlations i.e. |correlation| > 0.3.
A B

D

C

FIGURE 3 | (A) Pearson correlation between clinical traits relevant to metabolic syndrome and miRNA expression (-CRT values). The ‘x’ represents that the
correlation coefficient is not significant. The darker the correlation coefficient (‘red’ or ‘blue’) the stronger the correlation (more towards +1 or more towards -1).
Significant correlations (p< 0.05) of clinical traits with relevance to metabolic syndrome with the differentially expressed miRNAs. (B) Correlation with HBA1c;
(C) Correlation with Cholesterol; (D) Correlation with Creatinine; (E) Correlation with HDL, and (F) Correlation with LDL.
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observed from Figure 5, that each of the seven differentially
expressed miRNAs forms its own cluster of target genes with
small overlaps amidst their interactomes. We then performed
downstream pathway enrichment using overexpression analysis
through ConsensusPathDB to identify significantly enriched
pathways associated with each of these miRNAs. We could
determine the enriched pathways and GO terms for four of
these seven miRNAs. The top five significantly enriched
Frontiers in Endocrinology | www.frontiersin.org 8
pathways and top three biological processes, cellular
components, and molecular functions for each of these
miRNAs were detailed in Supplementary Tables 2 and
3 respectively.

For example, the miRNA, miR-153-3p, is differentially
downregulated with a DCʀтт of -3.4 (p=0.02, Supplementary
Table 1); the target genes for this miRNA are SPHK2, GNAI3,
ROCK1, and PLCB1; which are essential for the Sphingolipid
A

B

C

FIGURE 4 | (A) Comparison of the expression pattern of the 13 differentially expressed miRNAs for Gender and Smoking status of patients using a Student’s t-test.
Here ‘*’ represents a significant association (p< 0.05). (B) Boxplot illustrating the significant difference in expression of miR-106b-3p and miR-652-3p between males
and females. (C) Boxplot highlighting the significant difference in expression of miR-106-3p between patients who smoke versus those who don’t.
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signaling pathway (Supplementary Table 2). The Sphingolipid
signaling pathway has been shown to play an important role in
the regulation of obesity and type 2 diabetes (36). Similarly, the
PDGFR-beta signaling pathway was significantly enriched based
on the target genes of both miR-182-5p (USP6NL; CTTN;
RASA1; ACTR2; YWHAG) and miR-363-3p (MAP2K4;
WASL; ITGAV; RAP1B) respectively. The PDGFR-beta
signaling pathway is known to play a role in the regulation of
adipose progenitor maintenance and adipocyte-myofibroblast
transitions (37). We identified BMP receptor signaling as one
of the enriched pathways for miR-93-5p target genes (BAMBI;
RGMB; RGMA). It has previously (38) been demonstrated
that BMP signaling was relevant for both the white and brown
adipogenesis and plays an important role when interconnecting
obesity with metabolic and cardiovascular diseases. Finally,
we identified the cellular senescence pathway from KEGG
as a significantly enriched pathway for miR-93-5p target
genes (TGFBR2; E2F5; E2F1; PPP3R1; CDKN1A; RBL2).
Interestingly, recently Smith, Ulf et al. (39) reviewed that white
adipose tissue cells are highly susceptible to becoming senescent
both with aging, obesity and type 2 diabetes, independent of the
chronological age. The white adipose tissue senescence is
associated with the inappropriate expansion of adipocytes,
insulin resistance, and dyslipidemia i.e., metabolic syndrome, a
finding in line with our phenotype.

Additionally, we identified several different significantly
enriched GO terms based on the target genes for each of the
top four miRNAs (see Supplementary Table 3). These include
GO terms associated with biological processes such as positive
regulation of metabolic process (GO:0009893), cellular
developmental process (GO:0048869), cellular protein
modification process (GO:0006464), mitotic cell cycle process
(GO:1903047) for miR-153-3p, miR-182-5p, miR-363-3p and
miR-93-5p respectively (Supplementary Table 3).
Frontiers in Endocrinology | www.frontiersin.org 9
DISCUSSION

Individuals with a persistently high BMI are at the risk of developing
metabolic syndrome, a medical condition characterized by obesity,
insulin resistance, dyslipidemia, and hypertension, with an
accompanying risk of type 2 diabetes mellitus and cardiovascular
disease (22). There is abundant literature that has investigated the
metabolic differences underpinning lean and obese subjects (14).
Obese individuals have been the focus of health care in recent years
since the reversal of obesity by lifestyle, medical or surgical
intervention protects them from metabolic syndrome (40).
However, clinical observations identify a proportion of individuals
with elevated BMI who led an active and healthy life relatively free
of metabolic complications. This population is of particular interest
and intensely investigated to elucidate the underpinning
mechanisms and gene regulation that confer protection against
the development of metabolic syndrome. Moreover, differentiation
between OBO and OBM as well as early detection is paramount for
clinical management of these individuals.

Several studies have identified the essential role of differentially
expressed miRNA in obesity where a cluster of miRNAs; miR-92a-
3p, miR-122, miR-122-5p, miR-140-5p, miR-142-3p, miR-151a,
miR-155, miR-222, and miR-15a are upregulated and a group of
miRNA; miR-15a, miR-26a, miR-30b, miR-30c, miR-125b, miR-
126, miR-139-5p, miR-144-5p, miR-146a, miR-150, miR-223 and
miR-376a are downregulated in obese adults (14). In this study, we
focus particularly on morbidly obese individuals with a BMI>35kg/
m2 who are metabolically protected and susceptible. Our results
demonstrate that miR-106b-3p, miR-130a-3p, miR-130b-5p, miR-
153-3p, miR-182-5p, miR-331-3p, miR-363-3p, miR-433-3p, miR-
636, miR-652-3p, and miR-93-5p were significantly downregulated
whereas miR-452-3p, and miR-485-5p were significantly
upregulated in morbidly obese patients with metabolic diseases
compared to obese patients without any metabolic disease in a
FIGURE 5 | Top differentially expressed miRNAs with strong known interaction (coming from >=10 resources and interaction score>=0.75 from mirDIP) with target
genes. Here we highlight only those miRNAs which are significantly correlated with at least one clinical trait relevant to metabolic syndrome.
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dataset of Qatari population (Figures 2 and 3). These miRNAs
significantly correlated with at least one clinical trait of relevance to
metabolic syndrome like increased levels of HbA1c, creatinine,
cholesterol, LDL, and HDL in our dataset (Figure 3A). The
differentially expressed miRNAs correlate significantly with
HbA1c (downregulated miR-153-3p, miR-182-5p and miR-433-
3p; upregulated miR-331-3p, miR-452-3p and miR-485-5p),
creatinine (downregulated miR-106b-3p, miR-652-3p and miR-
93-5p), cholesterol (downregulated miR-130b-5p, miR-363-3p
and miR-636), LDL (downregulated miR-130a-3p), and HDL
(downregulated miR-652-3p) in our dataset in the context of
OBO and OBM. Interestingly, we identify differential expression
of miR-92a-3p, miR-122-5p, miR-15a, miR-125b, and miR-146a in
our data which have previously been reported to be relevant for
obesity (Figure 2B and Supplementary Table 1) (14).

Our unique dataset with the morbidly obese individuals
(OBO and OBM) highlights various differentially expressed
miRNAs which have been previously reported in obesity (14)
conferring confidence in our study. Although identified in prior
studies, these miRNAs (miR-92a-3p, miR-122-5p, miR-15a,
miR-125b, and miR-146a) do not associate significantly with
clinical lab traits, nor are they upregulated or downregulated in
alignment with previous studies. This can be a result of our focus
on metabolically healthy and unhealthy obese subjects compared
to prior investigations that analyze lean and obese groups. Our
findings further demonstrate that miR-153-3p, miR-182-5p, and
miR-433-3p are downregulated in the OBM group and
negatively correlated with HbA1c. Among these miRNAs,
miR-153-3p has been reported to be overexpressed in lupus
nephritis patients (28). Through miRNA-mRNA network
analysis, we have shown that miR-153-3p regulates
sphingolipid signaling. The sphingolipid pathway is known to
be extensively involved in obesity and obesity-induced
hyperglycemia (36). In agreement with our results, miR-182-5p
has been reported to be suppressed in diabetes patients.
Interestingly, it was shown that the expression of miR-182-5p
is high in newly diagnosed patients compared to healthy control.
However, its expression decreased with the increasing duration
of T2DM (41). Another miRNA downregulated in the OBM
group and positively correlated with HbA1c is miR-433-3p,
which has been reported to be overexpressed in serum of
hepatocellular carcinoma patients (42), pediatric beta-
thalassemia patients, and needs further evaluation in the
context of changes to hemoglobin (43). Moreover, miR-331-3p,
which was downregulated in metabolically unhealthy obese
patients and positively correlated with HbA1c has been
reported as a biomarker for HCV-related hepatocellular
carcinoma (44), and non-small cell lung cancer (45). Among
the upregulated miRNAs in our results, miR-485-5p has been
reported earlier to be associated with atherosclerosis (46), and
lung and oral cancer (47, 48), whereas, miR-452-3p has been not
reported earlier and might be a novel biomarker. Overall, these
differentially expressed miRNAs, significantly correlated with
HbA1c in obese patients with metabolic diseases and seem to
regulate the glycemic pathways. The mechanisms behind the
Frontiers in Endocrinology | www.frontiersin.org 10
observed correlations of these miRNAs with HbA1c are still
unclear and need to be investigated further.

Another set of miRNAs: miR-106b-3p, miR-652-3p, and miR-
93-5p, which were downregulated in OBM subjects, negatively
correlated with the creatinine levels in these patients. It has been
reported earlier that elevated serum creatinine levels are associated
with late stages of diabetic nephropathy or renal damage (49). The
role of these miRNAs is either a cause or consequence of renal
damage or possible existing hypertension in the OBM cohort. The
miR-652-3p has been reported to be relevant for insulin resistance
(50) and in polycystic ovary syndrome (PCOS) patients, its
expression has been shown to be downregulated in the context of
creatinine and HDL and is most likely associated with hepatic
involvement in cases of insulin resistance (51). miR-106b-3p has
been earlier reported to be downregulated in dengue infection (52);
its significance in metabolic disorders is unknown. Given the
significant association of miR-106b-3p with both gender (higher
expression in females in comparison to males) and smoking status
(higher expression in non-smokers compared to smokers) of
patients in our dataset, this miRNA needs a more detailed
mechanistic investigation as its significant correlation with
creatinine might be conditioned on the patient’s sex and smoking
status. Our results indicate that miR-652-3p is not only negatively
correlated with creatinine but also with high-density
lipopolysaccharides (HDL), indicating its possible role in
dyslipidemia in obese patients and warrants more investigation.
The results from our study indicate decreased expression of miR-
130a-3p, miR-130b-5p, miR-363-3p, miR-636, and miR-652-3p
respectively in the OBM subjects. Among these miRNAs, miR-
363-3p, miR-130b-5p, and miR-636 correlated with cholesterol, and
miR-130a-3p correlated with LDL. It has been reported previously
that miR-130a-3p levels were elevated in the pancreatic islets of
hyperglycemic subjects (53) as well as progressive cardiac
failure (54).

In line with previous studies, we report a significant differential
expression of miRNAs that play critical roles in insulin resistance,
sensitivity, and release. For example, miR-122-5p, miR-221-3p,
miR-126-3p, miR-223-3p, and miR-93-5p, which are
downregulated in OBM versus OBO, have been described within
the context of insulin sensitivity and resistance (55). In addition,
miR-34b-3p, miR-9-3p, miR-375, miR-146a-3p, and miR-30e-5p,
which are upregulated in OBM versus OBO have been involved in
insulin release in pancreatic b-cells and regulate b-cell fate (56–59).
Interestingly, IGF1R, a receptor tyrosine kinase that mediates
actions of insulin-like growth factor 1 and one of the factors that
are altered in obesity is a key target of differentially expressed
miRNAs identified by our framework including miR-182-5p.
Another important set of targets for the differentially expressed
miRNAs were the MAPK genes (MAP3K2 and MAP2K4) which
belong to the family of mitogen-activated protein kinase (MAPK).
MAPK genes and their interactors have been reported to protect
against adverse effects of high-fat feeding in a murine model,
demonstrating a decreased weight gain, improved glucose
tolerance, and insulin sensitivity, with markedly diminished
adipose tissue inflammation (60).
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In conclusion, our data show that subjects with morbid
obesity and metabolic syndrome compared to individuals with
obesity without metabolic syndrome show differential levels of
several miRNAs which can regulate multiple genes and
metabolic pathways relevant to glycemic regulation, lipid
metabolism, and cellular regeneration. However, the cause or
consequence merits further studies. The miRNA group
associated with metabolic syndrome in morbidly obese subjects
may have a pathophysiologic role that warrants further
elucidation. Regardless of their role in disease pathogenesis
these groups of miRNAs can serve as additional markers to
segregate OBM and OBO that can aid divergent management
strategies of treatment. To the best of our knowledge, this is the
first study of its kind that addresses the role of miRNAs in
morbidly obese healthy versus obese metabolic syndrome adults
for a population indigenous to Qatar. We do acknowledge that
our dataset is small and further studies are warranted in
additional larger cohorts to corroborate the importance of the
identified differentially expressed miRNAs.
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