

1

Emphasis on the Flipping Variable: Towards Effective Local Search for

Hard Random Satisfiability

Huimin Fua, Yang Xua, b,*, Guanfeng Wua, b,*, Jun Liu c, Shuwei Chena, b and Xingxing Hea, b

aNational-Local Joint Engineering Laboratory of System Credibility Automatic Verification, Southwest

Jiaotong University, Chengdu 610031, China
bSchool of Mathematics, Southwest Jiaotong University, Chengdu 610031, China
cSchool of Computing, Ulster University, Northern Ireland, UK

Abstract

Uniform random satisfiability (URS) and hard random satisfiability (HRS) are two important

benchmarks for algorithms that solve Boolean satisfiability problems, i.e., SAT solvers, especially

for random SAT solvers. Recently, the stochastic local search (SLS) algorithms have made major

breakthroughs in URS, resulting in several new state-of-the-art algorithms, e.g., Dimetheus, YalSAT,

ProbSAT, and Score2SAT. However, compared to the great progress of SLS on URS, the

performance of SLS on HRS lags far behind. In this paper, we propose a new SLS algorithm, named

EPEFV for HRS, which employs the extended framework of ProbSAT, and adds a new heuristic

method that emphasizes the role of flipping variable, called EFV. EFV focuses on the flipping

variables and is based on three components: 1) A new clause weighting scheme focusing on the

flipping variable, which is based on a new clause property called UnsatT. By applying this new

weighting scheme and a biased random walk, we design a new clause selection mechanism. 2) Design

a new scoring function named Uv by combining a novel variable property vUnsatT based on the

flipping variable with the commonly used property score.3) A new tie-breaking strategy in the

variable selection mechanism based on the new scoring function Uv. Extensive experimental results

demonstrate that EPEFV can not only greatly outperforms the state-of-the-art SLS algorithms as well

as complete solver competitors on HRS instances, but also can effectively solve URS instances with

long clauses. On the contrary, the most advanced SLS solvers, however, can only effectively solve

URS instances, while the most advanced complete solvers can only effectively solve HRS instances.

At present, no solver can effectively solve both HRS and URS at the same time, which means that

the EPEFV can be regarded as the state-of-the-art SLS solver for both HRS instances and URS

instances with long clauses. Finally, further empirical analysis confirms the effectiveness of each

mechanism underlying the EFV heuristic on HRS instances.

1. Introduction

The propositional satisfiability (SAT) problem is one of the most widely studied NP-complete

problems and plays an outstanding role in many domains of computer science and artificial intelligence

due to its significant importance in both theory and applications [8]. The SAT problem is fundamental

in solving many practical problems [12] in combinatorial optimization, statistical physics, and circuit

verification. Given a formula in conjunctive normal form (CNF), the SAT problem for this formula is

to answer whether it is satisfiable or not. If it is satisfiable, then a satisfying assignment should be found;

otherwise, it is required to prove that there exists no satisfying assignment. During the last two decades,

a significant amount of efforts has been devoted to the study of randomly generated satisfiability

instances (random SAT) and the performance of different algorithms on them.

* The corresponding author.

E-mail: xuyang@home.swjtu.edu.cn (Y. Xu) and wgf1024@swjtu.edu.cn (F. Wu);

mailto:xuyang@home.swjtu.edu.cn
mailto:wgf1024@swjtu.edu.cn

2

SAT algorithms can be mainly categorized into two classes: complete algorithms and incomplete

algorithms [18]. Complete algorithms, including conflict-driven clause learning (CDCL) [33, 34, 44],

are able to correctly judge a given formula to be satisfiable or unsatisfiable, but as the scale of the

problem increases, the complexity of the solution space grows exponentially. Incomplete algorithms

cannot determine that a given formula is unsatisfiable, but they are usually surprisingly effective in

finding solutions of satisfiable instances for random SAT (RS) instances [24]. Especially, stochastic

local search (SLS) algorithms among the incomplete algorithms are the most actively developing

approach [40]. The readers are referred to [3] for other kinds of incomplete algorithms.

SLS algorithms for SAT start by randomly generating a truth assignment of the variables of a given

formula. Then they explore the search space to minimize the number of falsified clauses. To do this,

they iteratively adapt some heuristics to select a variable to be flipped until they seek out a solution or

timeout. SLS algorithms are often evaluated on RS benchmarks [1], including uniform random k-SAT

(URS) benchmarks and hard random SAT (HRS) benchmarks. We adopt the name of “hard random

SAT” from [24] and the SAT competitions [8, 9], which are random instances generated by planting

a solution using an approach named "clause distribution control” (HRS) [10]. So, they are

essentially HRS-based random instances. The word "hard" is just stating that such instances are

hard to solve for existing local search algorithms. Both URS and HRS have a large variety of instances

to test the robustness of algorithms. Moreover, the performance of algorithms is usually stable on RS

instances. Thus, we can easily recognize good heuristics by testing SLS algorithms on RS instances.

The heuristics used by SLS solvers to solve RS problems are also useful for solving application

problems (large-scale application problems can be transformed into SAT problems and then solved by

the SAT solvers), e.g., computing theory [42], core graphs [29], gene regulatory networks [19],

automated verification [45].

Among URS instances, the famous SLS algorithm WalkSAT could solve uniform random 3-SAT

instances with one million variables two decades ago [23, 30]. The FrwCB solves uniform random 3-

SAT instances at ratio 4.2 with millions of variables within 2-3 hours [16]. Recently, significant

breakthroughs have been achieved on SLS algorithms for solving URS, resulting in the current SLS

algorithms, e.g., ProbSAT [5], ProbSAT’s variant YalSAT [11], ProbSAT’s improvement Dimetheus

[21] as well as Score2SAT [17]. The ProbSAT algorithm achieves great progress in solving URS

instances with a clause-to-variable ratio at the solubility phase transition, and these instances are the

most difficult among RS instances [27]. ProbSAT utilizes the probability distribution strategy for

variable selection [6], which has been successfully applied to URS problems. YalSAT adopts the restart

strategy based on a reluctant doubling scheme (Luby) on the basis of ProbSAT and shows great success

on solving URS. Dimetheus adopts preprocessing and bias-based decimation on the basis of ProbSAT

and is currently the best SLS algorithm for solving huge URS instances whose ratios are not close to

phase transition. In addition, it solves all uniform random 3-SAT instances at clause-to-variable less

than 4.267 (r<4.267) with millions of variables within 5000 seconds according to the recent results of

SAT Competitions1.. Score2SAT algorithm is developed based on the configuration checking (CC)

strategy [35] and shows good performance on URS instances. However, uniform random k-SAT with

long clauses (k>3) remains challenging for SLS solvers.

In addition, HRS instances are even harder to solve than URS instances at the solubility phase

transition for SLS solvers [45]. Note that all the HRS instances counts 65% of the random benchmark

in the random track of SAT Competition in 20182, indicating that the importance of HRS instances has

1http://www.satcompetition.org/
2https://baldur.iti.kit.edu/sat-competition-2017/benchmarks/

3

been highly recognized by the SAT community. As can be seen from the competition results of the

random track of SAT Competitions in 2017 and 2018, although the number of variables in HRS

instances is usually smaller than that in URS, the success rates of ProbSAT, Yalsat, Demetheus, and

Score2SAT in solving HRS lags far behind compared with their success rates in solving URS. Thus, the

performance of current SLS solvers on solving HRS needs to be further improved, along with the above

fact that URS with long clauses remains challenging for SLS solvers, which motivates us to design a

more effective and efficient SLS algorithm for solving more classes of HRS problems as well as URS

problems with long clauses.

SLS algorithms explore the search space aiming to minimize the number of unsatisfied clauses by

some heuristics whose goal is to select a flipping variable. Thus, flipping variables play a rather

important role in the search process. In this work, we present a new SLS algorithm named EPEFV

(Extended Probability strategy with Emphasis on the Flipping Variable) to achieve the above objective.

EPEFV employs an extended framework of ProbSAT incorporated with a new heuristic called EFV,

with emphasis on the flipping variable. The EFV heuristic has two components: a clause selection

mechanism based on the weighting scheme and the biased random walk, and a variable selection

mechanism based on a novel scoring function. The main contributions are summarized as follows.

Firstly, we identify an efficient SLS algorithm as a basis for solving RS. We have chosen

ProbSAT as a basis finally instead of Dimetheus, although ProbSAT shows worse performance than

Dimetheus on solving URS and has similar performance to Dimetheus on solving HRS according

to the results of the random track of SAT Competition in 2018. The new SLS algorithm is proposed

by either replacing the existing strategies in ProbSAT or adding new strategies to ProbSAT,

especially on both clause selection scheme and variable selection scheme as detailed below. It is

worth noting that based on the experimental results in Section 7 and Section 8, the performance of

the proposed SLS algorithm is better than Dimetheus.

Secondly, we introduce a new clause property focusing on the flipping variable called UnsatT, which

measures the number of steps at which a clause was unsatisfied while containing the flipping variable

up to a certain step (containing the flipping variable is necessary because some unsatisfied clauses do

not contain the flipping variable in a certain step, that is also the main reason behind the term “emphasis

on the flipping variable”). General clause weights are updated according to whether a clause is satisfied

or unsatisfied by flipping a variable [17, 36], while it is achieved in UnsatT based on only whether an

unsatisfied clause contains the flipping variable, distinguishing itself from the existing clause weighting

functions. Based on the UnsatT property, we develop a new clause weighting scheme named UT, and

define a new type of clause named HSC-UT (hard satisfiable clauses based on UT). Then, a new clause

selection mechanism is proposed based on the HSC-UT clauses, the UT scheme, and the updated biased

random walk strategy.

Thirdly, we introduce a new variable property emphasizing the flipping variable called vUnsatT,

which measures the number of times at which a variable appeared in those unsatisfied clauses while

containing the flipping variable up to a certain step, distinguishing itself from previous variable

properties. In this work, we design a new tie-breaking strategy based on a scoring function called Uv,

which is a linear combination of score and vUnsatT.

Finally, by adopting the clause selection mechanism with emphasis on the flipping variable and

integrating it with the proposed variable selection mechanism with emphasis on the flipping variable,

we obtain a new EFV heuristic. The two mechanisms underlying the heuristic EFV form the key

components of the EPEFV algorithm.

4

To evaluate the efficiency and the robustness of the EPEFV algorithm, we compare the performance

of EPEFV on the extensive HRS benchmarks against ProbSAT, YalSAT, Dimetheus, Score2SAT as

well as several complete algorithms, i.e., MapleLCMDistChronoBT [46], Cadical [28], gluHack [44],

SparrowToRiss [7]. Experimental results clearly show that EPEFV outperforms all competitors, and

thus establishes a new state-of-the-art SLS algorithm for solving HRS. Besides, we compare the EPEFV

on URS benchmarks against ProbSAT, YalSAT, Dimetheus, and Score2SAT. Experiments show that

EPEFV significantly outperforms these SLS solvers on URS benchmarks with long clauses. Finally, we

perform more empirical evaluations to analyze the effectiveness of the EFV heuristic and demonstrate

its contribution to the performance of EPEFV on HRS benchmarks, as well as the influence of different

clause weighting schemes on EPEFV.

The remainder of the paper is organized as follows. In Section 2, we provide some preliminary

definitions and notations. Section 3 presents a brief overview of the ProbSAT algorithm. In Section 4,

we introduce a new clause selection mechanism with an emphasis on the flipping variable. Section 5

describes the new variable selection mechanism with an emphasis on the flipping variable. In Section

6, we present the EPEFV algorithm and describe it in detail. Section 7 conducts extensive experiments

on HRS benchmarks to present the effectiveness and efficiency of the EPEFV, and Section 8 conducts

large experiments on URS benchmarks to present the generality and applicability of the EPEFV. In

Section 9, we empirically analyze the relationship of UnsatT and vUnsatT and the effectiveness of each

component underlying the EFV heuristic on HRS benchmark, then list the main differences between

EPEFV and ProbSAT as well as the major differences between UT and popular clause weighting

schemes. Section 10 concludes this paper and provides some future research directions.

2. Preliminaries

A SAT instance F is defined by a pair F=(X, C) such that var(F)={𝑣1, 𝑣2, …, 𝑣𝑛} is a set of n

Boolean variables (their values belong to the set {true, false}) and C={𝑐1, 𝑐2, …, 𝑐𝑚} is a set of m

clauses. A clause 𝑐𝑖 ∈ 𝐶 is a disjunction of literals and a literal is either a variable vi or its negation

¬𝑣𝑖. For a formula F, we use r = m/n to denote its clause-to-variable ratio. A formula F= 𝑐1˄ 𝑐2 ˄…˄

𝑐𝑚 is a conjunction of clauses, i.e., a CNF. A uniform random k-SAT instance is such that each clause

contains exactly k distinct non-complementary literals. A satisfying assignment for a CNF formula F

is an assignment to its variables such that the formula is evaluated to be true. Given a CNF formula, the

SAT problem will find an assignment that satisfies all the clauses of F.

SLS algorithms for SAT typically start by randomly assigning to every variable appearing in a given

formula a value of either true or false; then, in each subsequent search step, a variable is selected to flip

its truth assignment from true to false or vice versa. In SLS algorithms, for a variable v and an assignment

, score (v,) measures the increase in the number of satisfied clauses by flipping the assigned value

of v in our algorithm, and break (v,) is the number of satisfied clauses that become unsatisfied by

flipping the assigned value of v.

The satisfiable uniform random k-SAT generator generates satisfiable instances with planted

solutions according to the q-hidden model [2]. The URS benchmarks are generated for two different

sizes: medium and huge [5]. The medium-sized benchmarks are such instances with various variables

and r equals to the phase-transition ratio. The huge-sized benchmarks are such instances with a few

million clauses and with the ratio from far from the phase-transition ratio to relatively close and are as

large as some of the application benchmarks. Especially, most (nearly 66.6% of) URS instances in the

5

benchmark of the random SAT track in SAT Competition 2018 are huge ones. URS instances have been

added to the random track of SAT Competition since 2004.

The hard random satisfiability (HRS) is particularly interesting because it turns out to be one of the

hardest for all SLS solvers [8, 9]. The satisfiable hard random instances are generated by planting a

solution using the Clause Distribution Control approach [10], and thus these instances are named as

HRS-based instances. The word "hard" is just saying such instances are hard for existing local search

algorithms to solve. The author [8] has indicated that HRS problems have some potential in

applications (e.g., generating HRS problems with a planted solution can be used in cryptography). HRS

was added for the first time to the random track of SAT Competition in 2016 to evaluate and improve

SAT solvers, especially for SLS solvers. As witnessed in SAT competitions since 2016, apart from URS

instances, most (nearly 65% of) instances in the benchmark of the random SAT track in the SAT

Competition 2018 are HRS, which is classified into three types based on clause-to-variable ratios (r):

r=4.3, r≈5.206 and r=5.5. However, the performance of existing SLS algorithms lags far behind on

HRS especially for ratios of r≈5.206 and 5.5.

3. ProbSAT Algorithm Overview

In this section, we briefly review ProbSAT algorithm [5], which serves as the basis of the proposed

SLS algorithm. ProbSAT algorithm has wide influence among current SLS algorithms and attracted

increasing interest for solving RS benchmarks in the last few years.

 ProbSAT uses only the break values of a variable in a probability function 𝑓(𝑣, 𝑎) including a

polynomial or exponential shape as listed below.

𝑓(𝑣, 𝑎) = (0.9 + 𝑏𝑟𝑒𝑎𝑘(𝑣,))𝑐𝑏1 or 𝑓(𝑣, 𝑎) = (𝑐𝑏2)−𝑏𝑟𝑒𝑎𝑘(𝑣,𝑎),

where 𝑐𝑏1 and 𝑐𝑏2 are decimal parameters.

Note that ProbSAT algorithm is designed for solving HRS. The pseudo-code of ProbSAT is described

in Algorithm 1 and can be found in the literature [6].

Algorithm 1 The ProbSAT Algorithm

Input: CNF-formula F, MaxTries, MaxSteps

Output: A satisfying assignment α of F, or Unknown

1: for i: = 1 to MaxTries do

2: α := a randomly generated truth assignment;

3: for j:= 1 to MaxSteps do

4: if α satisfies F then return α;

5: C := an unsatisfied clause chosen at random;

6: v := x C selected with probability
𝑓(𝑥,𝛼)

∑ 𝑓(𝑧,𝛼)𝑧∈𝐶
;

7: α := α with v flipped;
8: return Unknown;

Initially, ProbSAT algorithm performs the first loop until it finds a satisfying assignment or reaches

the first limited steps denoted by MaxTries (MaxTries = 1019). Then ProbSAT algorithm generates a

complete assignment randomly as the initial assignment (line 2 in Algorithm 1). Then ProbSAT

algorithm starts the second loop until a satisfying solution is found or reaches the second limited steps

denoted by MaxSteps (MaxSteps = 1019). During the search process, ProbSAT algorithm selects an

unsatisfied clause randomly (line 5 in Algorithm 1), and then for solving 3-SAT instances, ProbSAT

6

chooses the polynomial function; otherwise, ProbSAT chooses the exponential function. ProbSAT tries

to select a flipping variable based on probability (line 6 in Algorithm1) to be flipped (line 7 in Algorithm

1). Finally, once the search process terminates, the ProbSAT reports as the solution; otherwise,

ProbSAT reports UNKNOWN.

On the one hand, ProbSAT algorithm explores the search space to minimize the number of unsatisfied

clauses, and to do this, it is natural for the ProbSAT algorithm to select a variable to be flipped, and thus

each flipping variable is a rather important feature in the search process. The variable selection of

ProbSAT mainly depends on two factors: clause selection strategy and variable selection strategy.

Therefore, the heuristic emphasizing the flipping variable (named EFV) is suggested in the EHC

heuristic [39]. However, EHC may not be suitable for the HRS. Since there are no hard clauses and soft

clauses (All clauses in a weighted partial CNF formula are divided into hard ones and soft ones, and

each soft clause is associated with a positive integer as its weight) [39] in HRS and the flipping variable

decides the direction of the search, it is reasonable for us to employ a heuristic emphasizing the flipping

variable to solve HRS. To further improve SLS algorithms for HRS, we focus on proposing two new

selection heuristics with emphasis on the flipping variable, which is detailed in subsequent Sections 4

and 5 respectively.

4. Clause Selection Mechanism with Emphasis on the Flipping Variable

The strategy of picking an unsatisfied clause is known to be successful for general SAT solving [5].

Indeed, the condition that the selected clause is unsatisfied is necessary, as selecting a satisfied clause

may lead to a local optimum [27]. As can be clearly seen from Algorithm 1, the ProbSAT algorithm

does not distinguish unsatisfied clauses in each step. In our opinion, this is a disadvantage of ProbSAT

when it is applied to RS solving. Because each unsatisfied clause varies in how easily it can be converted

from being unsatisfied to satisfied, selecting from the unsatisfied clauses with equal probability does not

provide sufficient guidance for SLS algorithms, especially for HRS instances. The number of times an

unsatisfied clause contains the flipped variable is an indication of how difficult it satisfies the clause.

We take this observation as the basis for a new clause weighting scheme that distinguishes between

unsatisfied clauses.

To improve the performance of ProbSAT on solving SAT, we develop a new clause selection

mechanism, which separates unsatisfied clauses in each step. The clause selection mechanism includes

three components as detailed in the subsequent sections: a new clause weighting scheme (named UT),

hard satisfiable clauses based on UT (HSC-UT), and a biased random walk strategy.

4.1 A New Clause Weighting Scheme Focusing on the Flipping Variable

Clause weighting schemes have been used prominently in SLS algorithms for solving SAT [4, 14,

20, 35], such as DLM [50], PAWS [49], and SAPS [26]. Although these mainstream clause weighting

SLS algorithms differ in the manner of how clause weights should be updated (probabilistic or

deterministic), they all choose to increase the weights of all the unsatisfied clauses or reduce the weights

of all the satisfied clauses as soon as a local minimum is encountered. These mainstream clause

weighting schemes are simply categorizing clauses into unsatisfied ones and satisfied ones, which are

also witnessed by mainstream SLS solvers such as Sparrow [4], DCCASat [35], and Score2SAT [17].

Moreover, as can be seen from the competition results of the random track of SAT Competitions 2017

and 2018, these SLS solvers, including Score2SAT, DCCASat, Sparrow, ProbSAT, and Dimetheus [21],

lost their power and effectiveness on solving HRS. Thus, these clause weighting schemes are not

7

informative enough to guide the SLSs for HRS instances. This motivates us to design a new clause

weighting scheme that could distinguish unsatisfied clauses in each step in a more effective way.

Accordingly, we consider a new clause property named UnsatT, which is the number of times that

a clause is unsatisfied and contains the flipping variable up to a certain step. UnsatT is formally defined

as below:

Definition 1. For a clause c, in each step s, UnsatT(c, s) is the number of steps at which a clause was

unsatisfied while containing the flipping variable up to step s.

In this sense, UnsatT can be regarded as the generalization of the property of clauses, i.e., UnsatT can

be widely used to improve the performance of the SLS algorithm like break property [4]. Intuitively,

clauses with larger UnsatT values are harder to keep satisfied in the search process. Thus, it is beneficial

for SLS algorithms to satisfy these clauses at the first instance.

To assign higher priority on clauses with larger UnsatT in clause weights, a new clause weighting

scheme based on UnsatT is proposed, which only works for the unsatisfied clauses which contain the

flipping variable during the search steps. The new clause weighting scheme, denoted as UT, works as

follows:

▪ At the beginning of the SLS algorithm, after an initial assignment is generated, for a clause c,

if c is unsatisfied under , the weight of c (i.e., UnsatT(c, 0)) is set to be 1; otherwise, UnsatT(c,

0) = 0;
▪ In search step s, if c is unsatisfied and contains the flipping variable, then UnsatT(c, s) =UnsatT(c,

s-1) + 1;
▪ Otherwise, UnsatT(c, s) =UnsatT(c, s-1).

Accordingly, the proposed algorithm based on UT only checks the unsatisfied clauses containing the

flipping variable rather than checking all clauses, and thus saving the computation time. Here we utilize

UT to guide the clause selection, distinguishing itself from previous clause weighting schemes in SLS

algorithms on picking a variable [4, 14, 35].

To pick a clause based on UT, inspired by HCSCCD (Hard Clauses’ States based Configuration

Changed and Decreasing) variables [39] in SLS algorithms, we introduce the notions of HSC-UT (hard

satisfiable clause based on UT) and ESC-UT (easily satisfiable clauses based on UT). The formal

definitions of HSC-UT and ESC-UT are given as follows:

Definition 2. For a clause c, in search step s, and given a positive integer parameter β, c is called an

HSC-UT in step s if c is unsatisfied and UnsatT(c, s)≥β.

Definition 3. For a clause c, in search step s, and given a positive integer parameter β, c is called an

HSC-UT in step s if c is unsatisfied and UnsatT(c, s)<β.

In this work, when the SLS algorithm searches to step s, we use the notation HSC-UT(s, β) to denote

the set of all HSCs-UT in step s and ESC-UT(s, β) to denote the set of all ESCs-UT in step s respectively

for the given β. In search step s, the union of HSC-UT(s, β) and ESC-UT(s, β) is the set of all unsatisfied

clauses in search step s for the given β. HSCs-UT is regarded as good candidates for clause selection,

especially when solving HRS problems.

4.2 The Biased Random Walk Strategy

An important component of ProbSAT algorithm is the standard random walk (line 6 in Algorithm

1). The standard random walk has been utilized prominently in SLS algorithms, including WalkSAT

[23], ProbSAT, YalSAT [11], and Dimetheus [21]. However, these SLS solvers are ineffective on

8

solving HRS instances, which was also illustrated by recent SAT Competitions. Thus, the standard

random walk may not be suitable for HRS instances. As discussed in Section 4.1, HSCs-UT is assigned

higher priority to be satisfied for HRS in the proposed algorithm, and thus it is reasonable for us to adopt

a biased random walk strategy inspired by the idea from [39], which is utilized to select a clause and

described as follows:

▪ At each step s, when a biased random walk is called, if HSCs (s, β) is not empty, then an HSC-

UT clause is selected randomly;

▪ Otherwise, an ESC-UT clause is selected randomly.

In summary, in the proposed new SLS algorithm, we replace the standard random walk component

(lines 6 in Algorithm 1) with the above described biased random walk component. As the biased random

walk component would select a clause randomly from either HSC-UT(s, β) or ESC-UT(s, β) in any step

s for a given β, thus a key point to efficiently implement biased random walk is to maintain two clause

sets during the search process: the set of current HSCs-UT and the set of current ESCs-UT. Following

the above clause selection scheme, the algorithm will select a variable in the chosen clause, which is

based on a new variable selection mechanism introduced in the subsequent section.

5. Variable Selection Heuristic with Emphasis on the Flipping Variable

In this section, we introduce a new variable selection heuristic with emphasis on the flipping variable,

named EFV, which is composed of three components: probabilistic variable selection, a new variable

property (namely vUnsatT), and a tie-breaking strategy based on a new scoring function (called Uv), as

detailed below.

5.1 Probabil ist ic Variable Selection

The break values count the number of clauses that become unsatisfied by flipping a given variable,

and thus it is natural to give priority to variables that have the smallest break value. Given a selected

clause, we adopt the probability function f (described in Section 3) used in ProbSAT [5] to

probabilistically select variables that have smaller break values. However, using only probability-based

on f may result in the same variable being selected in consecutive steps. To avoid this, a new variable

property (namely vUnsatT) is introduced to design a new scoring function (called Uv), and then we

employ a tie-breaking strategy based on Uv.

5.2 A New Variable Property - vUnsatT

In SLS algorithms, the method for selecting the variable to be flipped in each step is usually guided

by a scoring function. A scoring function can be a simple variable property or any mathematical

expression with one or more properties. The score property minimizes the number of currently

unsatisfied clauses in CNF. However, as indicated in Section 4.1, simply focusing on the number of

satisfied clauses and unsatisfied clauses is not informative enough to guide the SLS algorithm, especially

for HRS.

Therefore, we consider the number of times each variable appears in those unsatisfied clauses

containing the flipping variable in each search step. This measurement of a variable can be regarded as

a new variable property, distinguishing itself from previous variable properties and is defined formally

as below:

9

Definition 4. For a variable v, in the search step s, vUnsatT(v, s) is the number of steps at which a

variable v appeared in those unsatisfied clauses while containing the flipping variable up to step s.

In this sense, vUnsatT can be regarded as the generalization of the property of variables, i.e.,

vUnsatT can also be widely used to improve the performance of the SLS algorithm like score property

[16]. Intuitively, clauses containing variables with larger vUnsatT are harder to keep being satisfied in

the search process, and we use vUnsatT to guide the variable selection. The update process of vUnsatT

is given below.

▪ After an initial assignment is generated, for a variable v, if v appears in t unsatisfied clauses

under , then vUnsatT(v, 0)=t; otherwise, if v does not appear in any unsatisfied clauses,

vUnsatT(v, 0) =0;

▪ In search step s, once a flipping variable has been selected, let mv (s) denote the number of times

that v appears in those unsatisfied clauses while containing the flipped variable in step s. If mv

(s)0, then vUnsatT(v, s) = vUnsatT(v, s-1) + mv (s);

▪ Otherwise, if mv (s)=0, vUnsatT(c, s) = vUnsatT(c, s-1).

Remarks: when the variable property vUnsatT is updated, the algorithm only checks the variables

that appear in the unsatisfied clauses while containing the flipped variable in step s rather than checking

all variables and thus saves the computation time. In addition, it can be seen from the function vUnsatT

(v, s) that, as the step s increases, vUnsatT (v, s) is monotonically increasing with respect to variable v.

5.3 Scoring Function of Variable – Uv

The score property tends to decrease the number of unsatisfied clauses in the greedy mode. The

vUnsatT property can be used as a heuristic for greedy search as its use tends to reduce the set of HSCs-

UT by flipping a variable of an HSC-UT.

When deciding the priority of candidate variables to be selected, although score property is more

important than vUnsatT property, in some cases, vUnsatT should be allowed to overwrite the priorities.

Given a CNF formula F, the maximum value of score for all variables does not exceed the number of

clauses during the search process. However, as the search process progresses, the vUnsatT value of each

variable increases rapidly, and the more step the search proceeds, the larger the value of vUnsatT will

be.

To combine score and vUnsatT in a greedy search, we introduce a new scoring function that is a

linear combination of score and vUnsatT, inspired by the concept of comprehensive score [16]. The

new scoring function, named Uv (because it is utilized to break the tie of variable as detailed in the

subsequent section), is defined as follows:

Definition 5. For a variable v, in search step s, when the assignment is , the scoring function, denoted

as Uv, is defined as:
Uv(v, s,) = score (v,) + vUnsatT (v, s)/γ,

where γ is a positive integer parameter, which is used to control the role of vUnsatT value played in the

scoring function.

Uv is so simple that it can be computed with little overhead, and the parameter γ can be easily tuned.

Moreover, its simplicity allows its potential usage in solving many SAT instances and perhaps other

combinatorial search problems.

10

5.4 The New Tie-breaking Strategy

In the above sections, some measures or evaluations of a variable property have been discussed

and form the basis for the new variable selection heuristic. Currently, there are two most popular variable

selection strategies for solving RS: probability function strategy [6] and CC strategy [14].

In ProbSAT, it may result in selecting the same variable in consecutive steps by adopting only the

probability function f to pick a variable to be flipped, so that it causes useless work in consecutive steps.

Therefore, based on one idea of CC strategy [13, 38], it is expected to remember each variable’s

circumstance information and prevents a variable from being flipped if its circumstance has not been

changed since its last flip, which has been proved to be effective in the SLS algorithm for solving URS

instances [17, 35]. CC strategy is technically hard to track and realized by selecting a variable from all

variables in a SAT formula, while our algorithm selects a variable from an unsatisfied clause chosen by

the biased random walk, i.e., CC-based SLS solvers [13, 14, 16, 17, 35] have only the variable selection,

while our algorithm needs to select a clause and then select a variable from this selected clause. Thus,

the CC strategy may not be suitable for our algorithm, and it is reasonable for us to employ a tie-breaking

strategy that avoids selecting the same variable in consecutive steps.

The new tie-breaking scheme in the variable selection heuristic is described as follows:

In our algorithm, if the variable selected by probability at step s is the same as the variable flipped

in step s-1, a different variable with the greatest Uv value will be selected instead (further ties are broken

by picking the variable that comes earliest in the clause).

The proposed tie-breaking strategy is inspired by the idea in the literature [16], but they are

essentially different from each other due to the fact that the latter may not be suitable for HRS. The main

difference in our proposal lies in that a variable is mainly selected based on the probability function, and

there is no need to select one from all those variables with the same minimum break value in the selected

clause.

In brief, in the chosen clause based on the EFV heuristic, the new variable selection mechanism is

achieved by selecting the variables based on the probability function f; once ties occur, a new tie-

breaking strategy breaks ties of variables and selects a variable by preferring the variable with the

greatest Uv value, which is a linear combination of score and vUnsatT.

6. The EPEFV Algorithm

Based on the ProbSAT framework and two selection mechanisms underlying the EFV heuristic

described in Sections 4 and 5, we present a new SLS algorithm for solving random SAT, named EPEFV

(Extended Probability strategy with Emphasis on the Flipping Variable) in this section. The pseudo-

code of the EPEFV algorithm is outlined in Algorithm 2. We describe it in detail as follows.

11

Algorithm 2 The EPEFV Algorithm

Input: CNF-formula F, MaxTries, MaxSteps, γ,

Output: A satisfying assignment α of F, or Unknown

1: for i: = 1 to MaxTries do

2: α := a randomly generated truth assignment;

3: bestVar := null;

4: for j:= 1 to MaxSteps do

5: if α satisfies F then return α;

6: if HSC-UT(j,) is not empty then

7: C := a clause randomly chosen from HSC-UT(j,);

8: else C := a clause randomly chosen from ESC-UT(j,);

9: v := x C selected with probability
𝑓(𝑥,𝛼)

∑ 𝑓(𝑧,𝛼)𝑧∈𝐶
;

10: if v :== bestVar then

11: bestVar := xC, x≠ v, with the greatest Uv (x, s, α) in C, breaking ties with the smallest order;

12: else bestVar := v;

13: α := α with bestVar flipped;

14: update UT and vUnsatT;
15: return Unknown;

Initially, EPEFV performs the first loop until it finds a satisfying assignment or reaches the first

limited steps denoted by MaxTries. Then EPEFV generates a complete assignment at random as the

initial solution. bestVar is used to record which variable was flipped in the last step (line 3). Then it

executes the second loop until a solution is found or reaches the second limited steps denoted by

MaxSteps. The value of MaxSteps and MaxTries are set the same as those in ProbSAT in Algorithm 1.

In each search step, EPEFV picks a variable to be flipped. EPEFV performs the biased random walk

component as detailed in Section 4.2 (lines 6-8 in Algorithm 2): if there exists any HSC-UT in any step

j, a clause is picked randomly from HSC-UT(j, β); otherwise, a clause is picked randomly from ESC-

UT(j, β). The algorithm then picks a variable according to the probability based on f and the new tie-

breaking strategy as detailed in Section 5.3 (lines 9-12 in Algorithm 2): EPEFV picks first a variable by

the probability based on f (line 9 in Algorithm 2); if the variable is the same as the last flipped variable

(bestVar), EPEFV selects a variable by preferring the variable with the greatest Uv value (line 11). After

the variable is selected, the EPEFV flips the selected variable (line 13 in Algorithm 2) and updates the

clause weights based on the weighting scheme UT as detailed in Section 4.1 and also updates the

vUnsatT as detailed in Section 5.1 (line 14 in Algorithm 2), then the EPEFV algorithm starts the next

search step.

Finally, when the search terminates, if satisfies all clauses of F, EPEFV outputs as the solution;

otherwise, EPEFV reports UNKNOWN.

7. Experimental Evaluations on HRS Benchmarks

In this section, we first introduce the benchmark instance sets, the competitors, and the experimental

setup utilized in our experiments. Then we compare EPEFV with state-of-the-art SLS solvers and

complete solvers on all HRS testing benchmarks.

7.1 The Benchmarks

To make the experimental evaluation more comprehensive, apart from the existing HRS

benchmarks taken from the latest SAT competitions, additional HRS instances are generated according

12

to the hard random SAT formula tool [9], which randomly generates SAT instances significantly harder

than URS of the same size. We adopt the following benchmarks for HRS for testing purposes as well.

1) 4.3HRS Comp17: all HRS instances with r=4.3 from SAT Competition 2017(400≤n≤540,

40 instances, 5 for each size)

2) 4.3HRS Testing: HRS instances generated randomly by the hard random SAT formula tool

(r=4.3, 600≤n≤1000, 1000 instances, 200 for each size)

3) 5.206HRS Comp17: all HRS instances with r=5.206 from SAT Competition 2017 (400≤n

≤540, 40 instances, 5 for each size)

4) 5.206HRS Testing: HRS instances generated randomly by the hard random SAT formula

tool (r=5.206, 600≤n≤1000, 1000 instances, 200 for each size)

5) 5.5HRS Comp17: all HRS instances with r=5.5 from SAT Competition 2017(400≤n≤540,

40 instances, 5 for each size)

6) 5.5HRS Testing: HRS instances generated randomly by the hard random SAT formula tool

(r=5.5, 600≤n≤1000, 1000 instances, 200 for each size)

7) 5.699HRS Training: HRS instances generated randomly by the hard random SAT formula

tool (r=5.699, 200≤n

≤1000, 45 instances, 5 for each size)

8) SAT Comp18: all HRS instances from SAT Competition 2018 (r=4.3, r=5.206, r=5.5,

200≤n≤400, 165 instances, 55 for each ratio). Note that these HRS instances occupy 65% of

random benchmark in SAT Competition 2018, indicating that the importance of HRS

instances has been highly recognized by the SAT community.

9) 5.699HRS Testing: HRS instances generated randomly by the hard random SAT formula

tool (r=5.699, 200≤n≤1000, 900 instances, 100 for each size)

7.2 State-of-the-art SLS and Complete Competitors

First of all, the proposed EPEFV algorithm is compared against four SLS solvers including

Score2SAT [17], Yalsat [11], ProbSAT [6] and Dimetheus [22] as well as four complete solvers

including Cadical [28], Maple_LCM_Dist_ ChronoBT [46], gluHack [44], and SparrowToRiss [7].

Note that ProbSAT is the basic framework of EPEFV and is also the basic framework of Dimetheus

and YalSAT. Yalsat won the random track of SAT competition in 2017 (RTS2017). As reported in the

results of 2017 3 , Yalsat significantly outperforms an efficient complete algorithm tch_glucose3.

Dimetheus is the best SLS solver for URS instances. Dimetheus won the RSC20144 and RSC20165

and also first place among the SLS algorithms in RSC20186. According to the results of the RTS2016

and RTS2018, Dimetheus performs much better than DCCAlm [37], CSCCSat [36], YalSAT, and

ProbSAT. In our experiments, we use the versions of Dimetheus, ProbSAT, and Yalsat submitted to

RTS2018. The Score2SAT algorithm is the best SLS solver for HRS and won third place in RTS2017.

3https://baldur.iti.kit.edu/sat-competition-2017/results/random.csv.
4www.satcompetition.org/2014 /results.shtml.
5https://baldur.iti.kit.edu/sat-competition-2016/index.php?cat=results.
6http://sat2018.forsyte.tuwien. ac.at/index.php?cat=results.

http://www.satcompetition.org/2014%20/results.shtml
https://baldur.iti.kit.edu/sat-competition-2016/index.php?cat=results
http://sat2018.forsyte.tuwien/

13

In our experiments, the Score2SAT is downloaded from the webpage of SAT Competition 2017.

SparrowToRiss (denoted by STR for convenience) is a complex solver among preprocessor CP3

[41], Sparrow [4], and Riss [7], and is the best complete solver for HRS, and won the RTS2018. As

reported in the results of the RTS2018, STR shows superiority over Dimetheus. The algorithm gluHack

is an efficient complete solver and won the silver of RTS2018. For STR and gluHack, we use the binary

from SAT Competition 2018. MapleLCMDistChronoBT (denoted by MBT) won the main track of

2018 SAT Competition (MTS2018). In our experiments, the binary of MBT is the one submitted to

MTS2018. Cadical is the best complete solver for application instances and solved the most instances

in MTS2019. In our experiments, the source code of Cadical can be downloaded online7.

7.3 Experimental Preliminaries

EPEFV is implemented in C. We tuned the β and γ parameters of EPEFV according to our

experience. Accordingly, the optimal parameters are summarized in Table 1. For 𝑐1 and 𝑐2, we utilize

the default parameter setting tuned in the literature [7].

Table 1

Parameters settings of β and γ for EPEFV on solving HRS benchmarks.

Variable n
 r≤4.3 4.3<r<5.5 r≥5.5

β γ β γ β γ

n≤400
0 1000

215
321

2380

911

400<n≤600 961

n>600 3 1022 1212 1205

All experiments are carried out on the machine under a 64-bit Ubuntu Linux Operation System,

using 2 cores of Intel(R) Core (TM) i7-6700M 3.4 GHz CPU and 16 GB RAM. Each run that terminates

in finding a satisfying assignment within the cutoff time is successful. The cutoff time is set to 5000

seconds for the 4.3HRS Comp17 benchmark, 5.206HRS Comp17 benchmark, 5.5HRS Comp17

benchmark, and SAT Comp18 benchmark (as in SAT Competitions 2017, 2018, and 2019), and 600

seconds for the rest benchmarks (as in the literature [9]).

For the HRS instances from SAT Competition 2017, we run each solver 10 times for each instance.

For the HRS instances randomly generated and the SAT Comp18, we run each solver one time for each

instance, as the instances in each ratio are sufficient to test the performance of the solvers [16].

For performance metrics, we report successful runs (“suc”) and the penalized average run time

(“par 2”) (an unsuccessful run is penalized as double cutoff time) (as in SAT Competitions). The best

results for an instance class are highlighted in bold. If a solver has no successful run for a group of

instances, the corresponding ‘par 2’ is marked with “-”.

7.4 Experimental Results

In this subsection, we summarize the experimental results of EPEFV compared with its SLS and

complete competitors on the testing benchmarks for HRS as introduced in Section 7.1.

Table 2 presents the comparative experimental results of EPEFV with its SLS competitors

Score2SAT, YalSAT, Dimetheus as well as ProbSAT and complete competitors gluHack, STR, MBT

and Cadical on 4.3HRS Comp17 benchmark, 4.3HRS testing benchmark, 5.206HRS Comp17

7http://sat-race-2019.ciirc.cvut.cz/

14

benchmark, 5.206HRS Testing benchmark, 5.5HRS Comp17 benchmark, 5.5HRS Testing benchmark,

SAT Comp18 benchmark and 5.699HRS testing benchmark (Detailed breakdown results are shown in

Tables 1- 5 in the Appendix).

Table 2 shows that EPEFV is clearly the best solver on these benchmarks of HRS instances.

EPEFV gives the best performance for all HRS instance classes except for 4.3HRS Comp17 and

4.3HRS testing, and especially it solves more 5.206HRS Testing, 5.5HRS Testing, and 5.699HRS

testing instances than all other solvers. Given the good performance of EPEFV on 5.206HRS Testing

benchmark with up to1000 variables, it is very likely that it could be able to solve larger HRS instances

with r=5.206, r=5.5, and r=5.699. For 4.3HRS Comp17 and 4.3HRS testing, EPEFV solves as many

instances as all SLS competitors, but par 2 is a little more than those of all SLS competitors. These

experimental results confirm the good performance of EPEFV on the HRS benchmarks in SAT

Competition 2018, where it also solved more HRS instances than all SLS competitors and spent less

time than all complete competitors.

Table 2

Computational results on the HRS instances.

Benchmark

Score2SAT

suc

par2

YalSAT

suc

par2

Dimetheus

suc

par2

ProbSAT

suc

par2

gluHack

suc

par2

STR

suc

par2

MBT

suc

par2

Cadical

suc

par2

EPEFV

suc

par2

4.3HRS

Comp17

400

0.020

400

0.017

400

0.057

400

0.062

290

3481

400

0.117

270

3641

350

1625

400

0.023

4.3HRS

Testing

1000

0.028

1000

0.017

1000

0.028

1000

0.024

40

1347

1000

0.376

0

-

80

1119

1000

0.223

5.206HRS

Comp17

30

9250

0

-

0

-

0

-

380

863.2

400

5.709

400

67.64

380

1179

400

0.039

5.206HRS

Testing

0

-

0

-

0

-

0

-

80

323.2

800

261.2

193

1010

120

1642

1000

0.079

5.5HRS

Comp17

90

7750

90

7750

90

7750

90

7750

400

24.90

400

151.0

400

3.785

400

15.23

400

0.662

5.5HRS

Testing

160

1008

160

1008

160

1008

160

1008

360

839.8

460

650.3

920

158.1

440

751.6

1000

1.298

SAT

Comp18

100

3939

94

4349

79

5526

79

5259

165

5.476

165

45.82

165

4.544

165

21.13

165

0.128

5.699HRS

Testing

0

-

0

-

0

-

0

-

600

438.1

520

608.7

800

179.7

559

473.4

900

0.768

8. Experimental Evaluations on URS Benchmarks

Section 7 is focused on a comprehensive evaluation of the performance of EPEFV compared with

the SLS and complete competitors on the existing HRS benchmarks from the latest SAT competitions

(2017 and 2018), along with additional HRS instances generated according to the hard random SAT

formula tool [9]. To show the generality and applicability of the proposed EPEFV algorithm, additional

experiments on the uniform random k-SAT (URS) benchmarks are carried out, and the results are

summarized in this section. More specifically, results of extensive experiments to evaluate EPEFV on

uniform k-SAT instances with long clauses are provided, now that URS with long clauses remains

challenging for SLS solvers.

8.1 The Benchmarks and Experiment preliminaries

 To make the experimental evaluation more comprehensive, apart from the existing URS

benchmarks from the latest SAT Competitions (2016 and 2017), additional URS instances are generated

15

according to the URS generator8, with additional application instances from SAT Race 2019. Specially,

we adopt the following benchmarks:

1) SAT Competition 2017: all random k-SAT instances with k>3 from SAT Competition 2017

(120 instances, 60 for each k-SAT, k=5, 7), which vary in both size and ratio. These instances

count 67% of the random URS benchmark in SAT Competition 2017 (these instances occupy

40% of all random benchmark including URS and HRS in SAT Competition 2017). The

instances at r=21.117 vary from 200 variables to 590 variables, and with n=250000 vary from

16.0 ratios to 19.8 ratios for 5-SAT. The instances at r=87.79 vary from 90 variables to 168

variables, and with n=50000 vary from 55.0 ratios to 74.0 ratios for 7-SAT.

2) 5-SAT medium: all URS instances at phase transition generated randomly according to the

URS generator (r=21.117, n=200, 250, 300, 60 instances, 20 for each size)

3) 7-SAT medium: all URS instances at phase transition generated randomly according to the

URS generator (r=87.79, n=100, 110, 120, 60 instances, 20 for each size)

4) SAT Competition 2016 medium: all random k-SAT instances at phase transition with long

clauses (80 instances, 40 for each k-SAT, k=5, 7). The instances at r=21.117 vary from 200

variables to 590 variables for 5-SAT, and the instances at r=87.79 vary from 90 variables to

168 variables for 7-SAT.

5) 5-SAT huge: all URS instances whose ratios are not that close to phase transition while they

have huge sizes generated randomly according to the URS generator (r=18.0, 18.2, 18.4,

n=250000, 150 instances, 50 for each size)

6) 7-SAT huge: all URS instances with huge sizes generated randomly according to the URS

generator (r=64, 65, 66 n=50000, 150 instances, 50 for each size)

The parameter settings are determined according to our experience for β and γ are summarized in

Table 3.

Table 3

Parameters settings of β and γ for EPEFV on solving URS benchmarks.

k-SAT
huge medium

β γ β γ

5-SAT
800 50

10000000 50000000

7-SAT 50000000 20000000

The computing environments for the experiments are the same as those utilized for experiments in

Section 7. We perform each solver 10 runs for each instance from SAT Competitions in 2017 and 2016.

For the remaining benchmarks, each solver is performed one run on each instance. Each run that

terminates in finding a satisfying assignment within the cutoff time is successful. The cutoff time is set

to be 5000 seconds. We report successful runs (“suc”) and the penalized average run time (“par 2”) (as

in SAT Competitions). The best results for an instance class are highlighted in bold. If a solver has no

successful run for a group of instances, the corresponding ‘par 2’ is marked with “-”.

8.2 Experimental results

In the following, we present the comparative experimental results of EPEFV and its competitors

on each benchmark.

8https://sourceforge.net/projects/ksat generator/

16

Table 4 presents the comparative results of EPEFV with its SLS competitors Score2SAT, YalSAT,

Dimetheus as well as ProbSAT on SAT Competition 2017 benchmark, SAT Competition 2016

benchmark, 5-SAT medium benchmark, 7-SAT medium benchmark, 5-SAT huge benchmark, and 7-

SAT huge benchmark (Detailed breakdown results are shown in Tables 6- 10 in the Appendix).

Since EPEFV is based on ProbSAT, we first compare these two solvers. As shown in Table 4,

EPEFV solves more instances than ProbSAT on all instance classes except for the 7-SAT medium. For

each benchmark, ProbSAT succeeds in 533 runs, 321 runs, 29 runs, 32 runs, 48 runs, 97 runs

respectively, while EPEFV succeeds in 621 runs, 330 runs, 30 runs, 30 runs, 150 runs, 150 runs

respectively.

According to Table 4, EPEFV solves a few more instances than Score2SAT, YalSAT, and

Dimetheus. Further observation shows that EPEFV has similar performance with all SLS competitors

on 5-SAT medium and 7-SAT medium instances, and has similar performance as the best solver

Dimetheus on 5-SAT huge and 7-SAT huge instances, but with less time.

Table 4

Computational results on the URS instances.

Benchmark Class
Dimetheus ProbSAT YalSAT Score2SAT EPEFV

suc par2 suc par2 suc par2 suc par2 suc par2

SAT Competition 2017 592 5173 533 5713 510 5890 534 6077 621 5138

5-SAT medium 31 4895 29 5260 31 5014 29 5360 30 5133

7-SAT medium 33 4690 32 4857 33 4857 33 4622 30 5134

SAT Competition 2016

medium
311 6383 321 6239 282 6657 311 4808 330 6102

5-SAT huge 150 626.5 48 7073 96 4260 50 7927 150 1552

7-SAT huge 150 318.9 97 3812 21 10721 91 6303 150 473.1

9. Discussions

In this section, we present a detailed discussion of the EPEFV algorithm on HRS benchmarks. First,

we conduct further empirical analyses to reveal the relationship between UnsatT and vUnsatT, and

present the effectiveness of each underlying component in the EFV heuristic. Then we discuss the major

differences between EPEFV and ProbSAT. Finally, we discuss the main differences between the clause

weighting scheme UT and the popular clause weighting schemes PAWS and SWT.

9.1 Relationship between UnsatT and vUnsatT as well as Their Impact on the

Effectiveness of the EFV Mechanism

In this subsection, we illustrate the impact of UnsatT and vUnsatT on the effectiveness of the EFV

heuristic through both theoretical and experimental analysis.

 Intuitively, in a clause c, if the maximum difference between vUnsatT and UnsatT is so small that

all variables in c are not connected to other clauses, then the vUnsatT property becomes ineffective

because the tie-breaking strategy depends only on the score function of the variable. We will go deep

into this intuition by analyzing the relationship between UnsatT and vUnsatT in HRS instances and

demonstrating their influence on the effectiveness of the variable selection heuristic.

For a HRS formula F, when EPEFV performs until step s, for the relationship between UnsatT and

vUnsatT in F, we have the following conclusion.

Theorem 1. For a CNF formula F, when EPEFV runs to step s, for a clause c and a variable v

with the minimum vUnsatT in c, the least upper bound of UnsatT(c, s) is equal to vUnsatT(v, s) in c.

17

Proof. In a CNF formula, suppose c includes p+1variables, i.e., c=v˅𝑣1˅ 𝑣2˅ …˅ 𝑣𝑝. For a

variable v, there exists at least a clause c where v appears in F. Suppose v appears in t+1 clauses, i.e., c,

𝑐1
𝑣, 𝑐2

𝑣, …, 𝑐𝑡
𝑣. Note that vUnsatT(v, s)= UnsatT(c, s)+ UnsatT(𝑐1

𝑣, s)+ UnsatT(𝑐2
𝑣, s)+…+ UnsatT(𝑐𝑡

𝑣,

s), since vUnsatT(v, s)>0 and vUnsatT is a nonnegative integer according to its definition in Section 5,

and UnsatT(c, s)>0 and UnsatT is a nonnegative integer based on its definition in Section 4, we can

obtain that vUnsatT(v, s)≥UnsatT(c, s).

Suppose 𝑣1 appears in (𝑡1) +1 clauses, i.e., c, 𝑐1
𝑣1 , 𝑐2

𝑣1 , …, 𝑐𝑡1

𝑣1 . Note that vUnsatT(𝑣1, s)=

UnsatT(c, s)+ UnsatT(𝑐1
𝑣1, s)+ UnsatT(𝑐2

𝑣1, s)…+ UnsatT(𝑐𝑡1

𝑣1, s), since vUnsatT(𝑣1, s)>0 and vUnsatT

is a nonnegative integer, and UnsatT(c, s)>0 and UnsatT is a nonnegative integer, we can easily obtain

vUnsatT(𝑣1, s)≥UnsatT(c, s). For the same reason, we can easily obtain vUnsatT(𝑣2, s)≥UnsatT(c, s),

vUnsatT(𝑣3, s)≥UnsatT(c, s),…, vUnsatT(𝑣𝑝, s)≥UnsatT(c, s).

As vUnsatT(v, s) is the minimum vUnsatT in c, min{vUnsatT(v, s), vUnsatT(𝑣1, s), vUnsatT(𝑣2,

s),…, vUnsatT(𝑣𝑝 , s)}= vUnsatT(v, s)≥UnsatT(c, s). Thus the least upper bound of c’s UnsatT is

vUnsatT(v, s) in c.

We summarize some experimental statistics in Table 5 in order to verify these theoretical

expectations (the details of all HRS Testing benchmarks can be seen in Section 7.1), where min∆min

is the minimum values of vUnsatT minus UnsatT, and max∆max is the maximum values of vUnsatT

minus UnsatT. As can be clearly seen from Table 5, min∆min is equal to or greater than 0 in each class.

Thus, the experimental results are consistent with the theoretical ones.

Table 5

The size of vUnsatT minus UnsatT in an HRS formula. It shows when EPEFV performs step 10000, the experimental minimum

and maximum size of vUnsatT minus UnsatT of each clause on 100 instances for each class.

Variable size
4.3HRS Testing 5.206HRS Testing 5.5HRS Testing 5.699HRS Testing

min∆min max∆max min∆min max∆max min∆min max∆max min∆min max∆max

n=200 0 272 0 813 0 1029 0 920

n=300 0 455 0 509 0 917 0 650

n=400 0 390 0 566 0 648 0 457

n=500 0 364 0 411 0 673 0 559

n=600 0 261 0 299 0 511 0 362

n=700 0 272 0 288 0 362 0 280

n=800 0 259 0 231 0 361 0 281

n=900 0 195 0 221 0 378 0 285

n=1000 0 208 0 221 0 344 0 205

As explained in Section 4, two mechanisms are underlying the EFV heuristic, i.e., the clause selection

mechanism including two components: the new clause weighting scheme focusing on the unsatisfied

clauses of containing flipping variable and the biased random walk, and the variable selection

mechanism only containing one component: the new tie-breaking strategy. Thus, to demonstrate the

effectiveness of components (i.e., vUnsatT and UnsatT) in the EFV heuristic, we conduct experiments

to compare EPEFV with the four alternative versions in the following:

• EPEFV_alt1: This alternative version of EPEFV does not utilize the new clause weighting scheme,

i.e., does not use the UnsatT (i.e., removing update clause weights UT of line 14 in Algorithm 2,

or replacing the biased random walk component, i.e., lines 6-8 in Algorithm 2, with the standard

random walk component, i.e., line 6 in Algorithm 1);

• EPEFV_alt2: This alternative version of EPEFV does not use the tie-breaking strategy in the

variable selection mechanism. In other words, this alternative version does not select a variable to

be flipped based on the Uv function during the search process, i.e., does not use the vUnsatT

18

property (i.e., removing lines 10-12 and update variable property vUnsatT of line 14 in Algorithm

2);

• EPEFV_alt3: This alternative version of EPEFV uses the new tie-breaking strategy in the variable

selection mechanism, but the Uv function only uses score (i.e., replacing the Uv function, i.e., line

11 and variable property vUnsatT of line 14 in Algorithm 2, with the score);

• EPEFV_alt4 (ProbSAT): This alternative version of EPEFV does not use UT and the tie-breaking

strategy. i.e., does not use the UnsatT property and the vUnsatT property (i.e., removing lines 6-8,

10-12, and 14 in Algorithm 2, i.e., replacing Algorithm 2 with Algorithm 1).

To make the experiment more convincing, parameter γ of EPEFV__alt1, parameter β of

EPEFV__alt2 and EPEFV__alt3 are set to be the same as those in EPEFV, and we use these parameters

in the experiments. Each solver is performed on each instance, with a cutoff time of 600 seconds.

Table 6

Experimental results of EPEFV and its three alternative versions on all testing HRS benchmarks.

Benchmarks #inst
EPEFV EPEFV_alt1 EPEFV_alt2 EPEFV_alt3 EPEFV_alt4

suc par2 suc par2 suc par2 suc par2 suc par2

4.3HRS Comp17 40 40 0.023 40 0.006 40 0.009 40 0.049 40 0.057

4.3HRS Testing 1000 1000 0.223 960 48.09 1000 0.021 1000 0.027 1000 0.023

5.206HRS Comp17 40 40 0.039 0 - 39 30.05 40 0.042 0 -

5.206HRS Testing 1000 1000 0.079 0 - 1000 0.090 1000 0.089 0 -

5.5HRS Comp17 40 40 0.662 9 930 22 540.36 29 330.5 9 960

5.5HRS Testing 1000 1000 1.298 80 1104 360 768.3 280 864.3 160 1008

SAT Comp18 165 165 0.128 71 683.6 145 1200 152 94.66 79 5259

5.699HRS Testing 900 900 0.768 0 - 900 1.074 900 0.973 0 -

Table 7

Implementation rate of three components (β of UT, tie-breaking, r of tie-breaking) of EPEFV and its three alternative versions

on HRS benchmarks.

Benchmarks
EPEFV EPEFV_alt1 EPEFV_alt2 EPEFV_alt3

rate(β) rate(tie) rate(r) rate(tie) rate(r) rate(β) rate(β) rate(tie)

4.3HRS Comp17 1.000 0.038 0.023 0.037 0.023 0.584 0.656 0.092

4.3HRS Testing 0.998 0.027 0.023 0.033 0.016 0.957 0.983 0.036

5.206HRS Comp17 0.286 0.100 0.087 / / 0.584 0.284 0.101

5.206HRS Testing 0.291 0.099 0.037 / / 0.524 0.298 0.100

5.5HRS Comp17 0.528 0.151 0.149 0.053 0.008 0.675 0.598 0.141

5.5HRS Testing 0.540 0.153 0.150 0.062 0.047 0.677 0.547 0.152

5.699HRS Testing 0.371 0.124 0.121 / / 0.566 0.383 0.126

Empirical results for EPEFV and its four alternative versions on all testing HRS benchmarks (in

Section 7.1) are reported in Table 6 and Table 7. Table 6 presents experimental results in term of

successful runs and par 2, and Table 7 reports average rate, i.e., steps of performing each component

(i.e., steps of UnsatT >β, steps of performing tie-breaking, the steps of vUnsatT >γ) divided by total

steps for solving each HRS benchmark respectively, denoted by “rate(β)”, “rate(tie)”, and “rate(γ)”

respectively. If a solver has no successful run for a group of instances, the corresponding average rate’

is marked with “/”.

By comparing EPEFV and EPEFV_alt2 in Table 6, EPEFV overall outperforms EPEFV_alt2 in

term of successful runs on each benchmark, and rate(tie) of EPEFV is at least 0.1 on HRS instances

with r≈5.206, r=5.5 and r=5.699 in Table 7, which indicate that the new tie-breaking strategy contributes

to the performance of EPEFV on several HRS instances with r≈5.206, r=5.5 and r=5.699.

19

The comparative results of EPEFV_alt2 and EPEFV_alt4 shows that EPEFV_alt2 performs better

than EPEFV_alt4 on all testing HRS benchmarks, and according to Table 7, the rate(β) of EPEFV_alt2

is larger than 0.50 for each benchmark, which indicates that UnsatT property improves ProbSAT on

several HRS instances with r=4.3, r≈5.206, r=5.5 and r=5.699. Then the comparison between EPEFV

and EPEFV_alt3 in Table 6 illustrates that EPEFV performs better than EPEFV_alt3 on all testing HRS

benchmarks except for the 4.3HRS Testing benchmark. However, the rate(tie) of EPEFV_alt3 is similar

to the rate(tie) of EPEFV for each benchmark. Thus, we confirm that vUnsatT property plays a

significantly important role in EPEFV.

As can be seen from Table 6, the comparison between EPEFV and EPEFV_alt1, EPEFV_alt2 and

EPEFV_alt3 shows that EPEFV outperforms its four alternative versions in terms of par 2 on HRS

instances with r=5.206, r=5.5 and r=5.699, where the rate(γ) is at least 0.03, while it has similar

performance as EPEFV_alt2 on HRS instances with r=4.3, where the rate(γ) is smaller than 0.03. We

conjecture that the vUnsatT property becomes ineffective when the rate(γ) is smaller than 0.03.

Furthermore, we will theoretically analyze the influence of vUnsatT property on the new tie-breaking

strategy.

For a clause c, suppose c={𝑣1, 𝑣2, 𝑣3}, EPEFV runs to step s, min{vUnsatT(𝑣1, s), vUnsatT(𝑣2,

s), vUnsatT(𝑣3 , s)}= vUnsatT(𝑣2 , s), max{vUnsatT(𝑣1 , s), vUnsatT(𝑣2 , s), vUnsatT(𝑣3 , s)}=

vUnsatT(𝑣1, s). If EPEFV needs to perform the new tie-breaking strategy, then EPEFV will select a

variable with the maximum Uv value. The difference between Uv (𝑣1, s) and Uv (𝑣2, s) is denoted by

∆12U.

∆12U= Uv (𝑣1, s)- Uv (𝑣2, s).

Based on Theorem 1, we can easily obtain the difference between vUnsatT and UnsatT, denoted by

∆, respectively as follows:

∆1=vUnsatT (𝑣1, s-1)- UnsatT (c, s-1)

∆2=vUnsatT (𝑣2, s-1)- UnsatT (c, s-1)

Let ∆max be the maximum difference between vUnsatT and UnsatT in c, i.e.,

∆max= ∆1

Then Let ∆12score be the difference between score (𝑣1, s) and score (𝑣2, s), and the difference

between ∆1 and ∆2 is ∆12, thus

∆12U= Uv (𝑣1, s)- Uv (𝑣2, s)

= score (𝑣1, s) + vUnsatT (𝑣1, s)/γ- score (𝑣2, s) + vUnsatT (𝑣2, s)/γ

= score (𝑣1, s)- score (𝑣2, s)+(vUnsatT 𝑣1, s)- vUnsatT (𝑣2, s))/γ

=∆12score+(UnsatT (c, s-1)+ ∆1- UnsatT (c, s-1)- ∆2)/ γ

=∆12score+∆12/γ≤∆12score+∆max/γ.

We calculate the difference between Uv (𝑣1, s) and Uv (𝑣2, s), which is related to ∆12score and γ as

well as ∆12. When ∆12 is equal to or larger than γ, vUnsatT property is able to influence the EPEFV

algorithm, i.e., when ∆max is smaller than γ, EPEFV depends only on the score function of each variable.

These maximum ∆max values are listed in Table 5 for each class with EPEFV running to step 10000.

It is shown in Table 5that the maximum ∆max values of HRS instances with r≈5.206, r=5.5, and

r=5.699 are larger than both HRS instances with r=4.3 for each variable size. Thus, the larger the

vUnsatT value is, the more likely the rate(γ) is at least 0.03, the more effective the EPEFV algorithm

will be.

Thus, EPEFV generally is better than its all four alternative versions, which indicates the

effectiveness of all components of the proposed EFV heuristic.

20

9.2 Main Differences between EPEFV and ProbSAT

Although the EPEFV algorithm is conceptually related to the ProbSAT algorithm [6], there exist

major differences between EPEFV and ProbSAT. In this subsection, we summarize these major

differences as follows:

• Clause weighting scheme: EPEFV employs a new clause weighting scheme that only works on

the unsatisfied clauses containing the flipping variable, while ProbSAT does not use any clause

weighting schemes.

• Clause selection component: To give a higher priority to HSC-UT, the EPEFV algorithm applies

a biased random walk strategy to select an HSC-UT, while the ProbSAT algorithm uses a standard

random walk strategy.

• Variable selection mechanism: If the current variable selected based on probability is the same

as the last flipped variable, the EPEFV algorithm prefers to select a variable to be flipped by the

new tie-breaking strategy preferring the variable with the greatest Uv, while the ProbSAT algorithm

does not distinguish the current variable selected and the last flipped variable, if it simply uses the

probability function f to pick the variable to be flipped.

• Empirical performance on HRS benchmarks: Overall, as can be seen clearly from the extensive

experiments illustrated in Tables 2- 5 as well as Table 6, the EPEFV algorithm generally performs

much better than the ProbSAT algorithm on a wide range of HRS benchmarks, indicating that the

significant performance improvements of EPEFV over ProbSAT are due to the above major

differences between these two SLS algorithms.

9.3 Main differences between UT and SWT, PAWS

As the popular clause weighting schemes SWT [14] and PAWS [49] have been successfully applied

to SLS algorithms for solving SAT problems, in this subsection, we discuss the main differences

between UT and SWT, PAWS for solving HRS instances. Before getting into the details of discussion,

we first introduce two clause weighting schemes:

• PAWS weighting scheme. PAWS has been used prominently in SLS algorithms for picking a

variable to be flipped [16, 35]. The weight of each clause is a positive integer and is initiated as 1.

When a local optimum is reached, the clause weights are updated as follows. With probability p,

for each satisfied clause whose weight is large than one, its weight is decreased by one; with

probability (1-p), the weights of all unsatisfied clauses are increased by one.

• SWT weighting scheme. SWT has been used successfully in SLS algorithms for picking a

variable to be flipped [14]. SWT resembles in some respect the SAPS scheme [26]. The clause

weights are updated for solving SAT by SWT as follow: all clause weights are initialized as 1;

whenever SWT is called, the weights of all unsatisfied clauses are increased by one; further, if the

average weight �̅� exceeds a threshold γ, it smooths all clause weights as w(c)=p·w(c)+ (1-p)·�̅�,

where 0<p<1.

On the one hand, although conventional PAWS and SWT strategies are utilized to pick a variable

(such as CSCCSat, Score2SAT, Sparrow, and so on), they become ineffective for solving HRS instances.

In order to demonstrate the effectiveness of components in the clause weighting scheme UT, we conduct

experiments to compare EPEFV with the two alternative versions in the following.

• EPEFV_alt5: This alternative version of EPEFV utilizes PAWS rather than the new clause

weighting scheme (i.e., replacing the UT with the PAWS, i.e., line 14 in Algorithm 2, with the

PAWS).

21

• EPEFV_alt6: This alternative version of EPEFV utilizes SWT instead of the new clause weighting

scheme (i.e., replacing the UT with the SWT, i.e., line 14 in Algorithm 2, with the SWT).

The parameter settings are determined according to our experience for EPEFV’s two alternative

versions. The parameter settings found for EPEFV_alt5 and EPEFV_alt6 are summarized in Table 8,

and we use these parameter settings in the subsequent empirical study.

Table 8

The parameter settings for EPEFV_alt5 and EPEFV_alt6 on HRS benchmarks with r=4.3, r=5.206, r=5.5 and r=5.699.

Instance types variable sizes
EPEFV_alt5 EPEFV_alt6

γ β p γ β p

4.3HRS
n<600 1100 100 0.2 1000 200 0.9

n≥600 200 200 0.9 100 700 0.7

5.206HRS
n<600 800 220 0.9 320 400 0.7

n≥600 800 80 0.6 800 80 0.6

5.5HRS/5.699HRS
n<600 1500 30 0.1 900 1000 0.4

n≥600 800 2000 0.1 200 1200 0.2

Table 9

Experimental results of EPEFV and its two alternative versions on all testing HRS benchmark.

Benchmarks numbers
EPEFV EPEFV_alt5 EPEFV_alt6

suc par2 suc par2 suc par2

4.3HRS Comp17 40 40 0.023 40 0.012 40 0.028

4.3HRS Testing 1000 1000 0.223 960 48.05 1000 0.406

5.206HRS Comp17 40 40 0.039 0 - 0 -

5.206HRS Testing 1000 1000 0.079 0 - 0 -

5.5HRS Comp17 40 40 0.662 9 987.6 9 987.6

5.5HRS Testing 1000 1000 1.298 80 1104 80 1104

SAT Comp18 165 165 0.125 76 649.5 76 647.7

5.699HRS Testing 900 900 0.768 0 - 0 -

Empirical results for EPEFV and its two alternative versions on all testing HRS benchmarks (in

Section 7.1) are reported in Table 9. As can be seen from Table 9, due to the replacement of the SWT or

PAWS by the UT, EPEFV_alt5 and EPEFV_alt6 perform much worse than the EPEFV on the testing

HRS instances with r=4.3, r=5.206, r=5.5, and r=5.699, although EPEFV_alt5 is faster than EPEFV on

solving HRS instances with r=4.3 and n<600, which indicates the effectiveness of the new clause

weighting scheme UT and confirms that the proposed EFV heuristic contributes the performance of

EPEFV on such instances.

 We discuss the main differences between UT and SWT, PAWS in detail as follows.

• Initial clause weighting scheme: The initial clause weights of UT are set to be 1 for just the

unsatisfied clauses under the initial assignment, while that of SWT and PAWS are set to be 1 for

all clauses.

• Object to update clause weighting scheme: The clause weighting scheme UT only works for the

unsatisfied clauses containing the current flipping variable, while SWT works for all unsatisfied

clauses and PAWS works for all unsatisfied clauses or satisfied clauses.

• Goal to activate the clause weighting scheme: The clause weighting scheme UT is activated to

pick a clause, while conventional SWT and PAWS are activated to select a variable (noting that

SWT and PAWS are activated to select a clause in EPEFV_alt5 and EPEFV_alt6 respectively).

• Empirical performance on HRS benchmarks: According to the experimental results presented

in Table 9, EPEFV generally outperforms EPEFV_alt5 and EPEFV_alt6 in terms of metrics, and

thus SWT and PAWS are likely unsuitable for solving HRS instances, indicating that UT gains a

22

significant improvement over SWT and PAWS for HRS instances with r=4.3, r≈5.206, r=5.5, and

r=5.699.

10. Conclusions and Future Work

In this work, a new selection heuristic with emphasis on the flipping variable, called EFV, was

introduced to improve SLS algorithms for solving the HRS as well as URS with long clauses. By

incorporating the EFV heuristic into one of the SLS solver ProbSAT, a new SLS algorithm named

EPEFV (Extended Probability strategy with Emphasis on the Flipping Variable) was proposed to solve

HRS and URS with long clauses.

To demonstrate the effectiveness and the robustness of the EPEFV algorithm, we first evaluated

EPEFV on the HRS benchmarks including the latest HRS benchmarks from the random track of SAT

Competitions in 2017 and 2018, and additional a broad range of randomly generated HRS benchmarks.

Our experimental results showed that EPEFV significantly outperformed the SLS algorithms namely

Dimetheus, ProbSAT, YalSAT, Score2SAT and the complete algorithms including Cadical,

MapleLCMDist- ChronoBT, gluhack, and SparrowToRiss on all those HRS benchmarks, indicating

that EPEFV established a new state-of-the-art on SLS and complete algorithms for solving HRS in

terms of success rate and efficiency. Particularly, on several HRS instances with r=4.3, r≈5.206, r =5.5,

and r =5.699, the results showed that the current SLS as well as the complete algorithms either have

limited success rates or could not find solutions quickly (e.g., within the cutoff time of 600 CPU

seconds), but EPEFV algorithm is able to solve all these HRS benchmarks with 100% success rate and

efficient within a few seconds.

Secondly, we conducted experiments on URS benchmarks to compare the EPEFV with state-of-

the-art SLS competitors. The experimental results showed that EPEFV significantly outperformed these

SLS competitors on solving URS instances with long clauses from the random track of SAT

Competitions in 2016 and 2017.

Furthermore, we perform more empirical evaluations to analyze the effectiveness of the EFV

heuristic, where the experimental results confirmed the effectiveness of each underlying component in

the EFV heuristic and demonstrated that the EFV heuristic contributes to the performance of EPEFV

on HRS benchmarks. Also, we conducted empirical evaluations to compare the influence of different

clause weighting schemes on the EPEFV, and the experimental results showed that UT is the most

suitable clause weighting scheme on the EPEFV algorithm for solving the HRS problems.

Based on the above evaluations, it was clearly evidenced and concluded that the EPEFV can be

considered as a new state-of-the-art SLS solver for HRS instances and URS instances with long clauses

(The most advanced solvers can only effectively solve URS instances, and the most advanced complete

solvers can only effectively solve HRS instances). In further work, we would like to study the flexibility

of the proposed EFV heuristic and apply the EFV heuristic to other SLS algorithms and carry out deeper

work along this direction. We would also like to combine the EPEFV algorithm and other solvers to

achieve better performance on solving HRS instances. A significant research issue is to improve SLS

algorithms for structured instances and constrained satisfaction as well as graph search problems by the

proposed new heuristics.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61673320),

Sichuan Science and Technology Program (Grant No. 2020YJ0270), Humanities and Social Sciences

23

Research Project of the Ministry of Education of China (Grant No. 20XJCZH016), and the Fundamental

Research Funds for the Central Universities (Grant No. 2682019ZT16, Grant No. 2682020CX5). The

authors would like to thank Tomas Balyo for providing the HRS generator.

References

[1] Achlioptas, D. (2009). Random satisfiability. In Handbook of Satisfiability, pp. 245–270.

[2] Balint, A. (2014). Engineering stochastic local search for the satisfiability problem (Doctoral dissertation,
Universität Ulm).

[3] Gu, J., Purdom, P. W., Franco, J., & Wah, B. W. (1997). Algorithms for the satisfiability (SAT) problem:
A survey. In Satisfiability (SAT) Problem, DIMACS, American Mathematical Society, 1997, pp, 19-151.

[4] Balint, A. and Fröhlich, A. (2010). Improving stochastic local search for sat with a new probability
distribution. In Pro. of SAT-2010, pp. 10–15.

[5] Balint, A. and Schöning, U. (2012). Choosing probability distributions for stochastic local search and the
role of make versus break. In Pro. of SAT-2012, pp. 16–29.

[6] Balint, A. and Schöning, U. (2018). ProbSAT. In Pro. of SAT-2018: Solver and Benchmark Descriptions,
pp. 35.

[7] Balint, A. and Manthey, N. (2018). SparrowToRiss. In Proc. of SAT 2018: Solver and Benchmark

Descriptions, pp, 38-39.

[8] AlKasem, H. H., & Menai, M. E. B. (2020). Stochastic local search for Partial Max-SAT: an experimental
evaluation. Artificial Intelligence Review, pp. 1-42.

[9] Balyo, T, Chrpa L. (2018). Using Algorithm Configuration Tools to Generate Hard SAT Benchmarks.
In Proceedings of Eleventh Annual Symposium on Combinatorial Search, pp. 133-137.

[10] Barthel, W., Hartmann, A. K., et al (2002). Hiding solutions in random satisfiability problems: A
statistical mechanics approach. Physical review letters, vol. 88, no. 18, pp. 188701.

[11] Biere A. (2017). Cadical, lingeling, plingeling, treengeling and yalsat entering the sat competition 2017.
In Pro. of SAT-2017: Solver and Benchmark Descriptions, pp.14-15.

[12] Bearden S R B , Pei Y R , Ventra M D (2020). Efficient solution of Boolean satisfiability problems with
digital memcomputing. Scientific Reports, vol.10, no.1.

[13] Luo C, Cai S, Su K, Wu W (2015). Clause states based configuration checking in local search for
satisfiability. IEEE Trans. Cybern., vol. 45, no. 5, pp. 1028–1041.

[14] Cai, S., & Su, K. (2013). Local search for Boolean Satisfiability with configuration checking and
subscore. Artif. Intell. 204, 75-98.

[15] Cai, S., & Su, K. (2013). CCAnr. In Pro. of SAT-2013: Solver and Benchmark Descriptions, pp. 16–17.

[16] Cai, S., Luo, C., & Su, K. (2014). Scoring functions based on second level score for k-SAT with long
clauses. Journal of Artificial Intelligence Research, vol. 51, pp. 413-441.

[17] Cai, S. & Luo, C. (2017). Score2SAT: Solver description. In Pro. of SAT-2017: Solver and Benchmark
Descriptions, pp. 34.

[18] Alouneh, S., Al Shayeji, M. H., & Mesleh, R. (2019). A comprehensive study and analysis on SAT-
solvers: advances, usages and achievements. Artificial Intelligence Review, vol.52, no. 4, pp. 2575-
2601.

[19] Deshpande, A. & Layek, R. (2019). Fault detection and therapeutic intervention in gene regulatory
networks using SAT solvers. BioSystems, vol. 179, pp.55-62.

[20] Duong, T. T. N., Pham, D. N., Sattar, A., & Newton, M. H. (2013). Weight-enhanced diversification in
stochastic local search for satisfiability. In Proc. of IJCAI 2013, pp.524-530.

[21] Gableske, O. (2016). Sat solving with message passing. PhD dissertation, Ulm University, Germany.

24

[22] Gableske, O. (2018). Dimetheus. In Pro. of SAT-2018: Solver and Benchmark Descriptions, pp. 20-21.

[23] Hoos, HH. (2002). An adaptive noise mechanism for WalkSAT. In Pro. of AAAI’02, pp. 655–660.

[24] Fu, H., Wu, G., Liu, J., & Xu, Y. (2020). More efficient stochastic local search for satisfiability. Applied
Intelligence, pp.1-20.

[25] Barthel, W., Hartmann, A. K., Leone, M., et al (2002). Hiding solutions in random satisfiability
problems: A statistical mechanics approach. Physical review letters, vol. 88, no. 18, pp. 188701, 2002.

[26] Hutter, F., Tompkins, D. A., & Hoos, H. H. Scaling and probabilistic smoothing: Efficient dynamic
local search for SAT. In Proc. of CP 2002, pp, 233-248.

[27] Kirkpatrick, S., & Selman, B. (1994). Critical behavior in the satisfiability of random Boolean formulae.
Science, 264, 1297–1301

[28] Biere A. (2019). CADICAL at the SAT Race 2019. In Pro. of SAT-2019: Solver and Benchmark
Descriptions, pp. 8-9.

[29] König, B., Maxime, N. & Dennis, N. (2018). CoReS: A Tool for Computing Core Graphs via SAT/SMT
Solvers. In Pro. of Graph Transformation, pp. 37-42

[30] Kroc, L., Sabharwal, A., & Selman, B. (2010). An empirical study of optimal noise and runtime
distributions in local search. In Proc. of SAT-10, pp. 346–351.

[31] Li, C. & Li Y. (2012). Satisfying versus falsifying in local search for satisfiability - (poster presentation).
In Proc. of SAT-2012, pp. 477–478.

[32] Li, C. & Huang, W. (2005). Diversification and determinism in local search for satisfiability. In Pro. of
SAT’05, pp. 158–172.

[33] Liang, J., Ganesh, V., Poupart, P., Czarnecki, K. (2016). Learning rate based branching heuristic for sat

solvers. In Proc. of SAT-2016, pp. 123-140.

[34] Liang, J., Ganesh, V., Poupart, P., Czarnecki, K. (2017). An empirical study of branching heuristics
through the lens of global learning rate. In Proc. of SAT-2017, pp. 119-135.

[35] Luo, C., Cai, S., Wu, W., & Su, K. (2014). Double configuration checking in stochastic local search for
satisfiability. In Pro. of AAAI-2014, pp. 2703-2709.

[36] Luo, C., Cai, S., Wu, W., and Su, K. (2016). CSCCSat2014. In Pro. of SAT-2016: Solver and
Benchmark Descriptions, pp. 10.

[37] Luo, C., Cai, S. and Su, K.. (2016). DCCAlm. In Pro. of SAT-2016: Solver and Benchmark
Descriptions, pp. 11.

[38] Cai, S., Y., Hou, W. and Wang, H. (2019). Towards faster local search for minimum weight vertex cover
on massive graphs. Inf. Sci., 471, 64–79.

[39] Luo, C., Cai, S., Su, K.. & Huang, W. (2017). CCEHC: An Efficient Local Search Algorithm for
Weighted Partial Maximum Satisfiability (Extended Abstract). In Proc. of IJCAI, pp, 5030-5034.

[40] Kyrillidis, A., Shrivastava, A., Vardi, M., & Zhang, Z. (2020, April). FourierSAT: A Fourier Expansion-
Based Algebraic Framework for Solving Hybrid Boolean Constraints. In Proc. of IJCAI 2020, pp. 1552-
1560.

[41] Manthey, N. (2012). Coprocessor 2.0: a flexible cnf simplifier. In Proc. of SAT-2012, pp. 436–441.

[42] Mavrovouniotis, M., Müller, F. & Yang, S. (2017). Ant colony optimization with local search for
dynamic traveling salesman problems. IEEE Trans. Cybern, vol. 47, no. 7, pp. 1743-1756.

[43] Mitchell, D., Selman, B., & Levesque, H. (1992). Hard and easy distributions of SAT problems. In Proc.
of AAAI, Vol. 92, pp. 459-465.

[44] Zha, A. (2018). GluHack. In Proc. of SAT-2018: Solver and Benchmark Descriptions, pp. 26.

[45] Ouimet, M., & Lundqvist, K. (2007). Automated verification of completeness and consistency of
abstract state machine specifications using a SAT solver. Electronic Notes in Theoretical Computer
Science, 190(2), 85-97.

[46] Ryvchin, V. & Nadel, A. (2018). MapleLCMDistChronoBT. In Proc. of SAT-2018: Solver and
Benchmark Descriptions, pp. 29.

25

[47] Selman, B., Kautz, H. A., & Cohen, B. (1994). Noise strategies for improving local search. In Proc. of
AAAI 1994, pp, 337–343.

[48] Selman, B. (1995). Stochastic search and phase transitions: AI meets physics. In Proc. of IJCAI (1), pp.
998-1002.

[49] Thornton, J. (2005). Clause weighting local search for SAT. Journal of Automated Reasoning, 35(1-3),
97-142.

[50] Wu, Z., & Wah, B. W. An efficient global-search strategy in discrete Lagrangian methods for solving
hard satisfiability problems. In Proc. of AAAI/IAAI, 2000, pp, 310-315.

Appendix

This appendix section provides all the tables involved in the experimental section in the paper.

Table 1

Computational results on the HRS instances with r=4.3.

Benchmark
Instance

Class

Score2SAT

suc

par2

YalSAT

suc

par2

Dimetheus

suc

par2

ProbSAT

suc

par2

gluHack

suc

par2

STR

suc

par2

MBT

suc

par2

Cadical

suc

par2

EPEFV

suc

par2

4.3HRS

Comp17

n=400
50

0.003

50

0.08

50

0.021

50

0.002

50

261.2

50

0.090

50

102.6

50

274.6

50

0.004

n=420
50

0.012

50

0.014

50

0.033

50

0.002

50

481.1

50

0.080

50

390.6

50

481.7

50

0.010

n=440
50

0.020

50

0.072

50

0.326

50

0.448

30

4778

50

0.351

40

2464

40

2616

50

0.130

n=460
50

0.012

50

0.020

50

0.017

50

0.006

50

1572

50

0.078

30

4241

50

278.7

50

0.012

n=480
50

0.006

50

0.204

50

0.017

50

0.012

40

2481

50

0.079

30

4780

50

181.3

50

0.012

n=500
50

0.003

50

0.002

50

0.016

50

0.009

20

6481

50

0.068

30

4314

50

575.8

50

0.002

n=520
50

0.010

50

0.010

50

0.014

50

0.009

30

4939

50

0.088

30

4765

40

2360

50

0.002

n=540
50

0.014

50

0.006

50

0.013

50

0.006

20

6908

50

0.101

10

8034

20

6225

50

0.010

Overall
400

0.020

400

0.017

400

0.057

400

0.062

290

3481

400

0.117

270

3641

350

1625

400

0.023

4.3HRS

Testing

n=600
200

0.007

200

0.004

200

0.009

200

0.007

40

976.5

200

0.051

0

-

80

794.0

200

0.014

n=700
200

0.019

200

0.023

200

0.033

200

0.010

0

-

200

0.165

0

-

0

-

200

0.028

n=800
200

0.052

200

0.019

200

0.055

200

0.030

0

-

200

0.373

0

-

0

-

200

0.771

n=900
200

0.044

200

0.028

200

0.022

200

0.072

0

-

200

1.120

0

-

0

-

200

0.281

n=1000
200

0.016

200

0.010

200

0.022

200

0.002

0

-

200

0.172

0

-

0

-

200

0.022

Overall
1000

0.028

1000

0.017

1000

0.028

1000

0.024

40

1347

1000

0.376

0

-

80

1119

1000

0.223

Experiments on the HRS instances with r=4.3

Table 1 in the Appendix presents the comparative results of EPEFV with its SLS competitors

Score2SAT, YalSAT, Dimetheus as well as ProbSAT and complete competitors gluHack, STR, MBT

and Cadical on 4.3HRS Comp17 benchmark and 4.3HRS testing benchmark. According to Table 1 in

26

the Appendix, EPEFV outperforms all complete competitors gluHack, MBT and Cadical in terms of

metrics. Although EPEFV is slower than Score2SAT, Dimetheus, YalSAT and ProbSAT in terms of

par 2, EPEFV, Score2SAT, YalSAT, Dimetheus and ProbSAT show the same performance in terms of

successful runs. Overall, EPEFV outperforms STR in terms of par 2.

Table 2

Computational results on the HRS instances with r=5.206.

Benchmark
Instance

Class

Score2SAT

suc

par2

YalSAT

suc

par2

Dimetheus

suc

par2

ProbSAT

suc

par2

gluHack

suc

par2

STR

suc

par2

MBT

suc

par2

Cadical

suc

par2

EPEFV

suc

par2

5.206HRS

Comp17

n=400
0

-

0

-

0

-

0

-

50

45.87

50

2.052

50

4.698

50

15.96

50

0.034

n=420
0

-

0

-

0

-

0

-

50

19.72

50

0.976

50

16.27

50

114.0

50

0.032

n=440
20

6000

0

-

0

-

0

-

50

44.83

50

0.659

50

35.70

50

147.4

50

0.034

n=460
0

-

0

-

0

-

0

-

50

259.2

50

0.964

50

32.61

50

128.2

50

0.042

n=480
10

8000

0

-

0

-

0

-

50

526.1

50

13.75

50

23.55

50

703.9

50

0.038

n=500
0

-

0

-

0

-

0

-

50

278.2

50

1.505

50

44.37

50

915.0

50

0.038

n=520
0

-

0

-

0

-

0

-

40

2656

50

17.17

50

38.44

50

1587

50

0.050

n=540
0

-

0

-

0

-

0

-

40

3074

50

8.603

50

345.5

30

5819

50

0.044

Overall
30

9250

0

-

0

-

0

-

380

863.2

400

5.709

400

67.64

380

1179

400

0.039

5.206HRS

Testing

n=600
0

-

0

-

0

-

0

-

80

815.2

200

11.25

120

537.8

80

1870

200

0.048

n=700
0

-

0

-

0

-

0

-

0

-

200

11.81

33

1035

40

1515

200

0.058

n=800
0

-

0

-

0

-

0

-

0

-

160

273.0

40

1075

0

-

200

0.089

n=900
0

-

0

-

0

-

0

-

0

-

120

505.2

0

-

0

-

200

0.091

n=1000
0

-

0

-

0

-

0

-

0

-

120

504.5

0

-

0

-

200

0.110

Overall
0

-

0

-

0

-

0

-

80

323.2

800

261.2

193

1010

120

1642

1000

0.079

Experiments on the HRS instances with r≈5.206

Table 2 in the Appendix presents the experimental results of EPEFV and its competitors on the

5.206HRS Comp17 benchmark and 5.206HRS Testing benchmark. EPEFV stands out as the best solver

in terms of successful runs and par 2 on these benchmarks. Overall, EPEFV solves each instance within

one second. It is even more promising that EPEFV is over 146 times faster than STR in overall

5.206HRS Comp17 benchmarks. It is promising to see the performance of EPEFV remains surprisingly

good on 5.206HRS testing benchmark, where its competitors show rather poor performance, especially

for SLS solvers. For 5.206HRS testing benchmark, on all 1000 instances, EPEFV found the solution for

1000 of them, while the results for Score2SAT, YalSAT, Dimetheus, ProbSAT, gluHack, Cadical, MBT

and STR are only 0, 0, 0, 0, 80, 120, 193 and 800 respectively. Furthermore, EPEFV succeeded in 200

runs for the HRS instances with n=900 and n=1000, although the competitor STR solves 120 runs on

these two classes of instances, whereas all other competitors failed to find a solution for any of these

instances.

27

STR won the random track of SAT Competition 2018 and gluHack also exhibits good performance

on this benchmark, so it is challenging to improve such performance over STR and gluHack on the HRS

instances with r=5.206. Indeed, to the best of our knowledge, all 5.206HRS testing instances are solved

for the first time. Given the good performance of EPEFV on the 5.206HRS Testing benchmark with

1000 variables, it is very likely to be able to solve larger HRS instances with r=5.206. The experimental

results show that EPEFV algorithm achieves the advanced performance on HRS instances with r=5.206.

Table 3

Computational results on the HRS instances with r=5.5.

Benchmark
Instance

Class

Score2SAT

suc

par2

YalSAT

suc

par2

Dimetheus

suc

par2

ProbSAT

suc

par2

gluHack

suc

par2

STR

suc

par2

MBT

suc

par2

Cadical

suc

par2

EPEFV

suc

par2

5.5HRS

Comp17

n=400
10

800

10

800

10

800

10

800

50

8.608

50

154.3

50

2.153

50

4.938

50

0.468

n=420
20

6000

20

6000

20

6000

20

6000

50

3.801

50

102.6

50

2.217

50

3.424

50

0.548

n=440
0

-

0

-

0

-

0

-

50

6.723

50

194.1

50

5.583

50

4.090

50

0.628

n=460
10

8000

10

8000

10

8000

10

8000

50

33.22

50

157.4

50

3.616

50

23.80

50

0.746

n=480
10

8000

10

8000

10

8000

10

8000

50

29.7

50

149.0

50

3.599

50

8.626

50

0.570

n=500
10

8000

20

6000

20

6000

20

6000

50

45.72

50

122.4

50

3.370

50

17.05

50

0.460

n=520
20

6000

10

8000

10

8000

10

8000

50

33.91

50

158.5

50

5.128

50

19.82

50

0.850

n=540
10

8000

10

8000

10

8000

10

8000

50

37.54

50

169.8

50

4.610

50

40.08

50

1.022

Overall
90

7750

90

7750

90

7750

90

7750

400

24.90

400

151.0

400

3.785

400

15.23

400

0.662

5.5HRS

Testing

n=600
40

960.0

40

960.0

40

960.0

40

960.0

160

296.0

200

5.812

400

4.002

200

136.0

200

0.781

n=700
40

960.0

40

960.0

40

960.0

40

960.0

120

581.4

140

363.6

200

62.33

200

157.3

200

0.950

n=800
40

960.0

40

960.0

40

960.0

40

960.0

0

-

40

960.4

160

254.7

40

1065

200

1.396

n=900
40

960.0

40

960.0

40

960.0

40

960.0

40

1050

80

722.2

160

350.0

0

-

200

1.594

n=1000
0

-

0

-

0

-

0

-

40

1072

0

-

200

119.3

0

-

200

1.767

Overall
160

1008

160

1008

160

1008

160

1008

360

839.8

460

650.3

920

158.1

440

751.6

1000

1.298

Experiments on the HRS instances with r=5.5

Table 3 in the Appendix summarizes the experimental results on the 5.5HRS Comp17 benchmark

and 5.5HRS Testing benchmark. It is clear that EPEFV shows significantly better performance than all

its competitors on the whole benchmark. EPEFV is the only solver that solves all 5.5HRS Comp17

benchmark and 5.5HRS random benchmark in all runs. Also, EPEFV outperforms its competitors in

terms of par 2, which is more obvious as the instance size increases. In particular, on the instances with

n=1000, which are of the large size on 5.5HRS Testing benchmark, the runtime of EPEFV is 2 orders

of magnitudes less than that of complete solvers, and 3 orders of magnitudes less than that of SLS

solvers, which illustrates its robustness. The experimental results show that EPEFV achieves the

advanced performance on HRS instances with r=5.5.

28

Table 4

Computational results on the SAT Comp18 benchmark.

Instance

Ratio

Score2SAT

suc
par2

YalSAT

suc
par2

Dimetheus

suc
par2

ProbSAT

suc
par2

gluHack

suc
par2

STR

suc
par2

MBT

suc
par2

Cadical

suc
par2

EPEFV

suc
par2

r=4.3
55

0.001

55

0.001

55

0.007

55

0.013

55

10.98

55

0.052

55

8.636

55

53.76

55

0.007

r=5.206
33

4000
27

5228
12

7858
12

7985
55

3.425
55

1.020
55

3.281
55

7.436
55

0.019

r=5.5
12

7818

12

7818

12

7818

12

7818

55

2.035

55

136.4

55

1.744

55

1.067

55

0.356

Overall
100

3939

94

4349

79

5526

79

5259

165

5.476

165

45.82

165

4.544

165

21.13

165

0.128

Experiments on the SAT Comp18 benchmark

To investigate the performance of EPEFV on random HRS benchmarks with various ratio, we

compare it with its SLS and complete competitors on all HRS instances with r=4.3, r=5.206 and r=5.5

from SAT Competition 2018. Table 4 in the Appendix reports the number of solved instances and par

2 for each solver on each HRS benchmark. Since ProbSAT is the basic framework of EPEFV, we first

compare these two solvers. As shown in Table 4 in the Appendix, ProbSAT solves 79 HRS instances,

while EPEFV solves 165 HRS instances, which is 2 times as that solved by ProbSAT in overall HRS

instances.

EPEFV solved more instances than all SLS competitors. Overall, EPEFV solved 165 HRS instances,

compared to 79 for Dimetheus, and 94 for YalSAT, and 100 for Score2SAT. Further observation shows

that, although EPEFV solves the same number of? instances as the ones solved by all complete

competitors and SparrowToRiss, EPEFV is about 36 times faster than MBT (MBT performs the least

time among those competitors). In particular, EPEFV has similar performance with Score2SAT,

YalSAT and Dimetheus on HRS instances with r=4.3, and significantly outperforms gluHack, STR,

MBT and Cadical on HRS instances with r=4.3, r=5.206 and r=5.5.

Table 5

Computational results on the 5.699HRS Testing benchmark.

Instance

Class

Score2SAT
suc

par2

YalSAT
suc

par2

Dimetheus
suc

par2

ProbSAT
suc

par2

gluHack
suc

par2

STR
suc

par2

MBT
suc

par2

Cadical
suc

par2

EPEFV
suc

par2

n=200
0

-

0

-

0

-

0

-

100

0.027

100

42.01

100

1.217

100

0.109

100

0.202

n=300
0

-

0

-

0

-

0

-

100

0.437

100

94.28

100

1.688

100

1.098

100

0.282

n=400
0

-

0

-

0

-

0

-

100

2.372

100

213.5

100

1.994

100

3.497

100

0.471

n=500
0
-

0
-

0
-

0
-

100
34.44

100
228.2

100
2.862

100
8.975

100
0.607

n=600
0

-

0

-

0

-

0

-

60

509.5

80

444.1

100

8.714

100

104.8

100

0.783

n=700
0

-

0

-

0

-

0

-

100

190.4

40

855.9

100

153.6

59

542.3

100

0.910

n=800
0
-

0
-

0
-

0
-

40
804.8

0
-

100
104.97

0
-

100
1.025

n=900
0

-

0

-

0

-

0

-

0

-

0

-

80

367.7

0

-

100

1.246

n=1000
0

-

0

-

0

-

0

-

0

-

0

-

20

974.2

0

-

100

1.388

Overall
0
-

0
-

0
-

0
-

600
438.1

520
608.7

800
179.7

559
473.4

900

0.768

29

Experiments on the 5.699HRS testing benchmark

Table 5 in the Appendix reports the experimental results for each solver on 5.699HRS testing

benchmark. For the instances with n=200, EPEFV is slower than gluHack, but EPEFV and gluHack

solved the same number of instances. For the instances with n=300, n=400, n=500, n=600 and n=700,

EPEFV and MBT solved the same number of instances, but EPEFV has less accumulative run time.

For the instances with n=900 and n=1000, EPEFV solved the most instances. Especially, EPEFV shows

significantly superior performance than its competitors on the instances with n=1000, where it solved

100 instances, while MBT solved 20 instances and other competitors failed to find a solution for any of

these instances. Overall, EPEFV solved 900 instances, compared to 0, 0, 0, 0, 600, 520, 559 and 800

instances for Score2SAT, YalSAT, Dimetheus, ProbSAT, gluHack, STR, Cadical and MBT

respectively.

Table 6

Computational results on the SAT Competition 2017 benchmark.

Instance types Variable sizes and ratios
Dimetheus ProbSAT YalSAT Score2SAT EPEFV

suc par2 suc par2 suc par2 suc par2 suc par2

5-SAT
n<600, r=21.117 121 7032 132 6829 130 6880 140 6655 170 6074

n=250000, r<21.117 130 3755 110 4526 120 4147 80 6231 130 3667

7-SAT
n<200, r=87.79 181 5552 181 5791 170 5957 193 5582 201 5499

n=50000, r<87.79 160 2117 110 4514 90 5517 110 5756 120 4015

Overall 592 5173 533 5713 510 5890 534 6077 621 5138

Experiments on the SAT Competition 2017 benchmark

Table 6 in the Appendix presents the results of the performance of EPEFV compared with the

current SLS solvers on all URS instances with long clauses from SAT Competition 2017. The results

show that for huge 7-SAT instances with n=50000 and r<87.79, the performance of EPEFV and

Dimetheus are similar and better than that of other competitors, and for the remaining instances class,

EPEFV significantly outperforms its competitors in terms of successful runs and par 2.

Especially, EPEFV succeeds in a few more runs than ProbSAT and Score2SAT on random 5-SAT

instances at phase transition. EPEFV succeeds in 170 runs, compared to 132 for ProbSAT and 140 for

Score2SAT. Further observation shows that EPEFV succeeds in 201 runs, compared to 181 for

Dimetheus and ProbSAT and 193 for Score2SAT on random 7-SAT instances at phase transition.

Overall, EPEFV succeeds in 621 runs, whereas none of its competitors succeeds in more than 600 runs

with the cutoff time, which illustrates its robustness.

Table 7

Computational results on the 5-SAT medium benchmark.

Instances class
 Dimetheus ProbSAT YalSAT Score2SAT EPEFV

suc suc suc par2 suc par2 suc par2 suc par2

5-SAT-200 11 4506 11 4505 11 4513 11 4502 11 4500

5-SAT-250 10 5009 10 5158 10 5247 9 5517 9 5518

5-SAT-300 10 5171 8 6116 10 5283 9 6060 10 5381

Overall 31 4895 29 5260 31 5014 29 5360 30 5133

Experiments on the 5-SAT medium benchmark

Table 7 in the Appendix reports the experimental results for each solver on 5-SAT medium

benchmark. For medium 5-SAT instances with n=200, EPEFV gives the best performance. Overall,

EPEFV significantly outperforms ProbSAT and Score2SAT on this benchmark, and has similar

30

performance as the best solver Dimetheus, solving only one less instance.

Table 8

Computational results on the 7-SAT medium benchmark.

Instances class
 Dimetheus ProbSAT YalSAT Score2SAT EPEFV

suc suc suc suc suc suc suc par2 suc par2

7-SAT-100 12 4057 12 4044 12 4044 12 4043 11 4503

7-SAT-110 11 4562 11 4559 11 4749 11 4580 9 5518

7-SAT-120 10 5432 9 5969 10 5451 10 5242 10 5381
Overall 33 4690 32 4857 33 4857 33 4622 30 5134

Experiments on the 7-SAT medium benchmark

Table 8 in the Appendix presents the results of the performance of EPEFV compared with the

current SLS solvers on the 7-SAT medium benchmark. As can be seen from Table 8, EPEFV has similar

performance with all SLS competitors on this benchmark.

Table 9

Computational results on the SAT Competition 2016 benchmark.

Instances
class

 Dimetheus ProbSAT YalSAT Score2SAT EPEFV

suc par2 suc par2 suc par2 suc par2 suc par2

5-SAT

r=21.115
131 6891 141 6716 130 6913 132 6797 150 6445

7-SAT

r=87.79
180 5876 180 5762 152 6401 179 6298 180 5759

Overall 311 6383 321 6239 282 6657 311 4808 330 6102

Experiments on the SAT Competition 2016 medium benchmark

Table 9 in the Appendix presents the experimental results of EPEFV and its competitors on URS

instances at phase transition from SAT Competition 2016. Since EPEFV is based on ProbSAT, we first

compare these two solvers. As can be seen form Table 9, EPEFV succeeds in more runs than ProbSAT

on all instances calssess. Overall, ProbSAT succeeds in 321 runs, while EPEFV succeeds in 330 runs.

EPEFV succeeds in a few more runs than its competitors. Overall, EPEFV succeeds in 330 runs,

compared to 311 for both Dimetheus and Score2SAT and 282 for YalSAT.

Table 10

Computational results on the huge k-SAT instances with k=5, 7.

k-SAT Instances class
Dimetheus ProbSAT YalSAT Score2SAT EPEFV

suc par2 suc par2 suc par2 suc par2 suc par2

5-SAT

5-SAT- r=18.0

n=250000
50 673.2 48 819.0 50 344.7 50 3780 50 904.2

5-SAT- r=18.2
n=250000

50 464.6 0 - 46 1635 0 - 50 1632

5-SAT- r=18.4

n=250000
50 741.8 0 - 0 - 0 - 50 2120

overall 150 626.5 48 7073 96 4260 50 7927 150 1552

7-SAT

7-SAT- r=64.0

n=50000
50 114.7 50 37.68 21 6363 50 1890 50 103.7

7-SAT- r=65.0
n=50000

50 392.3 47 797.4 0 - 41 5220 50 235.5

7-SAT- r=66.0

n=50000
50 449.8 0 - 0 - 0 - 50 1080

Overall 150 318.9 97 3812 21 10721 91 6303 150 473.1

31

Experiments on the k-SAT huge instances with k=5, 7

The huge sized instances with a few million clauses and the ratio from far from the phase-transition

ratio to relatively close, are as large as some of the application benchmarks. We compare EPEFV with

SLS solvers on huge 5-SAT and 7-SAT instances.

As can be seen form Table 10 in the Appendix, EPEFV is based on ProbSAT, while EPEFV solves

more instances than ProbSAT. Overall, ProbSAT solves 48 (out of 150) and 97 (out of 150) instances

for huge 5-SAT and 7-SAT instacnes respectively, while EPEFV solves all huge instances, which is 3

times as that solved by ProbSAT on huge 5-SAT instacnes. Dimetheus and EPEFV solve more instances

than YalSAT and Score2SAT. EPEFV has similar performance with Dimetheus on this benchmark,

solving all instances.

