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Abstract 

Uniform random satisfiability (URS) and hard random satisfiability (HRS) are two important 

benchmarks for algorithms that solve Boolean satisfiability problems, i.e., SAT solvers, especially 

for random SAT solvers. Recently, the stochastic local search (SLS) algorithms have made major 

breakthroughs in URS, resulting in several new state-of-the-art algorithms, e.g., Dimetheus, YalSAT, 

ProbSAT, and Score2SAT. However, compared to the great progress of SLS on URS, the 

performance of SLS on HRS lags far behind. In this paper, we propose a new SLS algorithm, named 

EPEFV for HRS, which employs the extended framework of ProbSAT, and adds a new heuristic 

method that emphasizes the role of flipping variable, called EFV. EFV focuses on the flipping 

variables and is based on three components: 1) A new clause weighting scheme focusing on the 

flipping variable, which is based on a new clause property called UnsatT. By applying this new 

weighting scheme and a biased random walk, we design a new clause selection mechanism. 2) Design 

a new scoring function named Uv by combining a novel variable property vUnsatT based on the 

flipping variable with the commonly used property score.3) A new tie-breaking strategy in the 

variable selection mechanism based on the new scoring function Uv. Extensive experimental results 

demonstrate that EPEFV can not only greatly outperforms the state-of-the-art SLS algorithms as well 

as complete solver competitors on HRS instances, but also can effectively solve URS instances with 

long clauses. On the contrary, the most advanced SLS solvers, however, can only effectively solve 

URS instances, while the most advanced complete solvers can only effectively solve HRS instances. 

At present, no solver can effectively solve both HRS and URS at the same time, which means that 

the EPEFV can be regarded as the state-of-the-art SLS solver for both HRS instances and URS 

instances with long clauses. Finally, further empirical analysis confirms the effectiveness of each 

mechanism underlying the EFV heuristic on HRS instances. 

1. Introduction 

The propositional satisfiability (SAT) problem is one of the most widely studied NP-complete 

problems and plays an outstanding role in many domains of computer science and artificial intelligence 

due to its significant importance in both theory and applications [8]. The SAT problem is fundamental 

in solving many practical problems [12] in combinatorial optimization, statistical physics, and circuit 

verification. Given a formula in conjunctive normal form (CNF), the SAT problem for this formula is 

to answer whether it is satisfiable or not. If it is satisfiable, then a satisfying assignment should be found; 

otherwise, it is required to prove that there exists no satisfying assignment. During the last two decades, 

a significant amount of efforts has been devoted to the study of randomly generated satisfiability 

instances (random SAT) and the performance of different algorithms on them. 
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SAT algorithms can be mainly categorized into two classes: complete algorithms and incomplete 

algorithms [18]. Complete algorithms, including conflict-driven clause learning (CDCL) [33, 34, 44], 

are able to correctly judge a given formula to be satisfiable or unsatisfiable, but as the scale of the 

problem increases, the complexity of the solution space grows exponentially. Incomplete algorithms 

cannot determine that a given formula is unsatisfiable, but they are usually surprisingly effective in 

finding solutions of satisfiable instances for random SAT (RS) instances [24]. Especially, stochastic 

local search (SLS) algorithms among the incomplete algorithms are the most actively developing 

approach [40]. The readers are referred to [3] for other kinds of incomplete algorithms. 

SLS algorithms for SAT start by randomly generating a truth assignment of the variables of a given 

formula. Then they explore the search space to minimize the number of falsified clauses. To do this, 

they iteratively adapt some heuristics to select a variable to be flipped until they seek out a solution or 

timeout. SLS algorithms are often evaluated on RS benchmarks [1], including uniform random k-SAT 

(URS) benchmarks and hard random SAT (HRS) benchmarks. We adopt the name of “hard random 

SAT” from [24] and the SAT competitions [8, 9], which are random instances generated by planting 

a solution using an approach named "clause distribution control” (HRS) [10]. So, they are 

essentially HRS-based random instances. The word "hard" is just stating that such instances are 

hard to solve for existing local search algorithms. Both URS and HRS have a large variety of instances 

to test the robustness of algorithms. Moreover, the performance of algorithms is usually stable on RS 

instances. Thus, we can easily recognize good heuristics by testing SLS algorithms on RS instances. 

The heuristics used by SLS solvers to solve RS problems are also useful for solving application 

problems (large-scale application problems can be transformed into SAT problems and then solved by 

the SAT solvers), e.g., computing theory [42], core graphs [29], gene regulatory networks [19], 

automated verification [45]. 

Among URS instances, the famous SLS algorithm WalkSAT could solve uniform random 3-SAT 

instances with one million variables two decades ago [23, 30]. The FrwCB solves uniform random 3-

SAT instances at ratio 4.2 with millions of variables within 2-3 hours [16]. Recently, significant 

breakthroughs have been achieved on SLS algorithms for solving URS, resulting in the current SLS 

algorithms, e.g., ProbSAT [5], ProbSAT’s variant YalSAT [11], ProbSAT’s improvement Dimetheus 

[21] as well as Score2SAT [17]. The ProbSAT algorithm achieves great progress in solving URS 

instances with a clause-to-variable ratio at the solubility phase transition, and these instances are the 

most difficult among RS instances [27]. ProbSAT utilizes the probability distribution strategy for 

variable selection [6], which has been successfully applied to URS problems. YalSAT adopts the restart 

strategy based on a reluctant doubling scheme (Luby) on the basis of ProbSAT and shows great success 

on solving URS. Dimetheus adopts preprocessing and bias-based decimation on the basis of ProbSAT 

and is currently the best SLS algorithm for solving huge URS instances whose ratios are not close to 

phase transition. In addition, it solves all uniform random 3-SAT instances at clause-to-variable less 

than 4.267 (r<4.267) with millions of variables within 5000 seconds according to the recent results of 

SAT Competitions1.. Score2SAT algorithm is developed based on the configuration checking (CC) 

strategy [35] and shows good performance on URS instances. However, uniform random k-SAT with 

long clauses (k>3) remains challenging for SLS solvers. 

In addition, HRS instances are even harder to solve than URS instances at the solubility phase 

transition for SLS solvers [45]. Note that all the HRS instances counts 65% of the random benchmark 

in the random track of SAT Competition in 20182, indicating that the importance of HRS instances has 

 
1http://www.satcompetition.org/ 
2https://baldur.iti.kit.edu/sat-competition-2017/benchmarks/  
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been highly recognized by the SAT community. As can be seen from the competition results of the 

random track of SAT Competitions in 2017 and 2018, although the number of variables in HRS 

instances is usually smaller than that in URS, the success rates of ProbSAT, Yalsat, Demetheus, and 

Score2SAT in solving HRS lags far behind compared with their success rates in solving URS. Thus, the 

performance of current SLS solvers on solving HRS needs to be further improved, along with the above 

fact that URS with long clauses remains challenging for SLS solvers, which motivates us to design a 

more effective and efficient SLS algorithm for solving more classes of HRS problems as well as URS 

problems with long clauses. 

SLS algorithms explore the search space aiming to minimize the number of unsatisfied clauses by 

some heuristics whose goal is to select a flipping variable. Thus, flipping variables play a rather 

important role in the search process. In this work, we present a new SLS algorithm named EPEFV 

(Extended Probability strategy with Emphasis on the Flipping Variable) to achieve the above objective. 

EPEFV employs an extended framework of ProbSAT incorporated with a new heuristic called EFV, 

with emphasis on the flipping variable. The EFV heuristic has two components: a clause selection 

mechanism based on the weighting scheme and the biased random walk, and a variable selection 

mechanism based on a novel scoring function. The main contributions are summarized as follows. 

Firstly, we identify an efficient SLS algorithm as a basis for solving RS. We have chosen 

ProbSAT as a basis finally instead of Dimetheus, although ProbSAT shows worse performance than 

Dimetheus on solving URS and has similar performance to Dimetheus on solving HRS according 

to the results of the random track of SAT Competition in 2018. The new SLS algorithm is proposed 

by either replacing the existing strategies in ProbSAT or adding new strategies to ProbSAT, 

especially on both clause selection scheme and variable selection scheme as detailed below. It is 

worth noting that based on the experimental results in Section 7 and Section 8, the performance of 

the proposed SLS algorithm is better than Dimetheus. 

Secondly, we introduce a new clause property focusing on the flipping variable called UnsatT, which 

measures the number of steps at which a clause was unsatisfied while containing the flipping variable 

up to a certain step (containing the flipping variable is necessary because some unsatisfied clauses do 

not contain the flipping variable in a certain step, that is also the main reason behind the term “emphasis 

on the flipping variable”). General clause weights are updated according to whether a clause is satisfied 

or unsatisfied by flipping a variable [17, 36], while it is achieved in UnsatT based on only whether an 

unsatisfied clause contains the flipping variable, distinguishing itself from the existing clause weighting 

functions. Based on the UnsatT property, we develop a new clause weighting scheme named UT, and 

define a new type of clause named HSC-UT (hard satisfiable clauses based on UT). Then, a new clause 

selection mechanism is proposed based on the HSC-UT clauses, the UT scheme, and the updated biased 

random walk strategy. 

Thirdly, we introduce a new variable property emphasizing the flipping variable called vUnsatT, 

which measures the number of times at which a variable appeared in those unsatisfied clauses while 

containing the flipping variable up to a certain step, distinguishing itself from previous variable 

properties. In this work, we design a new tie-breaking strategy based on a scoring function called Uv, 

which is a linear combination of score and vUnsatT.  

Finally, by adopting the clause selection mechanism with emphasis on the flipping variable and 

integrating it with the proposed variable selection mechanism with emphasis on the flipping variable, 

we obtain a new EFV heuristic. The two mechanisms underlying the heuristic EFV form the key 

components of the EPEFV algorithm. 
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To evaluate the efficiency and the robustness of the EPEFV algorithm, we compare the performance 

of EPEFV on the extensive HRS benchmarks against ProbSAT, YalSAT, Dimetheus, Score2SAT as 

well as several complete algorithms, i.e., MapleLCMDistChronoBT [46], Cadical [28], gluHack [44], 

SparrowToRiss [7]. Experimental results clearly show that EPEFV outperforms all competitors, and 

thus establishes a new state-of-the-art SLS algorithm for solving HRS. Besides, we compare the EPEFV 

on URS benchmarks against ProbSAT, YalSAT, Dimetheus, and Score2SAT. Experiments show that 

EPEFV significantly outperforms these SLS solvers on URS benchmarks with long clauses. Finally, we 

perform more empirical evaluations to analyze the effectiveness of the EFV heuristic and demonstrate 

its contribution to the performance of EPEFV on HRS benchmarks, as well as the influence of different 

clause weighting schemes on EPEFV. 

The remainder of the paper is organized as follows. In Section 2, we provide some preliminary 

definitions and notations. Section 3 presents a brief overview of the ProbSAT algorithm. In Section 4, 

we introduce a new clause selection mechanism with an emphasis on the flipping variable. Section 5 

describes the new variable selection mechanism with an emphasis on the flipping variable. In Section 

6, we present the EPEFV algorithm and describe it in detail. Section 7 conducts extensive experiments 

on HRS benchmarks to present the effectiveness and efficiency of the EPEFV, and Section 8 conducts 

large experiments on URS benchmarks to present the generality and applicability of the EPEFV. In 

Section 9, we empirically analyze the relationship of UnsatT and vUnsatT and the effectiveness of each 

component underlying the EFV heuristic on HRS benchmark, then list the main differences between 

EPEFV and ProbSAT as well as the major differences between UT and popular clause weighting 

schemes. Section 10 concludes this paper and provides some future research directions. 

2. Preliminaries 

A SAT instance F is defined by a pair F=(X, C) such that var(F)={𝑣1, 𝑣2, …, 𝑣𝑛} is a set of n 

Boolean variables (their values belong to the set {true, false}) and C={𝑐1, 𝑐2, …, 𝑐𝑚} is a set of m 

clauses. A clause 𝑐𝑖  ∈ 𝐶  is a disjunction of literals and a literal is either a variable vi or its negation 

¬𝑣𝑖. For a formula F, we use r = m/n to denote its clause-to-variable ratio. A formula F= 𝑐1˄ 𝑐2 ˄…˄ 

𝑐𝑚 is a conjunction of clauses, i.e., a CNF. A uniform random k-SAT instance is such that each clause 

contains exactly k distinct non-complementary literals. A satisfying assignment  for a CNF formula F 

is an assignment to its variables such that the formula is evaluated to be true. Given a CNF formula, the 

SAT problem will find an assignment that satisfies all the clauses of F. 

SLS algorithms for SAT typically start by randomly assigning to every variable appearing in a given 

formula a value of either true or false; then, in each subsequent search step, a variable is selected to flip 

its truth assignment from true to false or vice versa. In SLS algorithms, for a variable v and an assignment 

, score (v, ) measures the increase in the number of satisfied clauses by flipping the assigned value 

of v in our algorithm, and break (v, ) is the number of satisfied clauses that become unsatisfied by 

flipping the assigned value of v. 

The satisfiable uniform random k-SAT generator generates satisfiable instances with planted 

solutions according to the q-hidden model [2]. The URS benchmarks are generated for two different 

sizes: medium and huge [5]. The medium-sized benchmarks are such instances with various variables 

and r equals to the phase-transition ratio. The huge-sized benchmarks are such instances with a few 

million clauses and with the ratio from far from the phase-transition ratio to relatively close and are as 

large as some of the application benchmarks. Especially, most (nearly 66.6% of) URS instances in the 



5 

 

benchmark of the random SAT track in SAT Competition 2018 are huge ones. URS instances have been 

added to the random track of SAT Competition since 2004. 

The hard random satisfiability (HRS) is particularly interesting because it turns out to be one of the 

hardest for all SLS solvers [8, 9]. The satisfiable hard random instances are generated by planting a 

solution using the Clause Distribution Control approach [10], and thus these instances are named as 

HRS-based instances. The word "hard" is just saying such instances are hard for existing local search 

algorithms to solve. The author [8] has indicated that HRS problems have some potential in 

applications (e.g., generating HRS problems with a planted solution can be used in cryptography). HRS 

was added for the first time to the random track of SAT Competition in 2016 to evaluate and improve 

SAT solvers, especially for SLS solvers. As witnessed in SAT competitions since 2016, apart from URS 

instances, most (nearly 65% of) instances in the benchmark of the random SAT track in the SAT 

Competition 2018 are HRS, which is classified into three types based on clause-to-variable ratios (r): 

r=4.3, r≈5.206 and r=5.5. However, the performance of existing SLS algorithms lags far behind on 

HRS especially for ratios of r≈5.206 and 5.5. 

3. ProbSAT Algorithm Overview 

In this section, we briefly review ProbSAT algorithm [5], which serves as the basis of the proposed 

SLS algorithm. ProbSAT algorithm has wide influence among current SLS algorithms and attracted 

increasing interest for solving RS benchmarks in the last few years. 

 ProbSAT uses only the break values of a variable in a probability function 𝑓(𝑣, 𝑎) including a 

polynomial or exponential shape as listed below. 

𝑓(𝑣, 𝑎) = (0.9 + 𝑏𝑟𝑒𝑎𝑘(𝑣, ))𝑐𝑏1 or 𝑓(𝑣, 𝑎) = (𝑐𝑏2)−𝑏𝑟𝑒𝑎𝑘(𝑣,𝑎), 

where 𝑐𝑏1 and 𝑐𝑏2 are decimal parameters. 

Note that ProbSAT algorithm is designed for solving HRS. The pseudo-code of ProbSAT is described 

in Algorithm 1 and can be found in the literature [6]. 

 

Algorithm 1 The ProbSAT Algorithm 

Input: CNF-formula F, MaxTries, MaxSteps 

Output: A satisfying assignment α of F, or Unknown 

1: for i: = 1 to MaxTries do 

2: α := a randomly generated truth assignment; 

3:  for j:= 1 to MaxSteps do 

4:  if α satisfies F then return α; 

5:   C := an unsatisfied clause chosen at random; 

6:   v := x C selected with probability 
𝑓(𝑥,𝛼)

∑ 𝑓(𝑧,𝛼)𝑧∈𝐶
; 

7:   α := α with v flipped; 
8: return Unknown; 

 

Initially, ProbSAT algorithm performs the first loop until it finds a satisfying assignment or reaches 

the first limited steps denoted by MaxTries (MaxTries = 1019). Then ProbSAT algorithm generates a 

complete assignment  randomly as the initial assignment (line 2 in Algorithm 1). Then ProbSAT 

algorithm starts the second loop until a satisfying solution is found or reaches the second limited steps 

denoted by MaxSteps (MaxSteps = 1019). During the search process, ProbSAT algorithm selects an 

unsatisfied clause randomly (line 5 in Algorithm 1), and then for solving 3-SAT instances, ProbSAT 
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chooses the polynomial function; otherwise, ProbSAT chooses the exponential function. ProbSAT tries 

to select a flipping variable based on probability (line 6 in Algorithm1) to be flipped (line 7 in Algorithm 

1). Finally, once the search process terminates, the ProbSAT reports  as the solution; otherwise, 

ProbSAT reports UNKNOWN. 

On the one hand, ProbSAT algorithm explores the search space to minimize the number of unsatisfied 

clauses, and to do this, it is natural for the ProbSAT algorithm to select a variable to be flipped, and thus 

each flipping variable is a rather important feature in the search process. The variable selection of 

ProbSAT mainly depends on two factors: clause selection strategy and variable selection strategy. 

Therefore, the heuristic emphasizing the flipping variable (named EFV) is suggested in the EHC 

heuristic [39]. However, EHC may not be suitable for the HRS. Since there are no hard clauses and soft 

clauses (All clauses in a weighted partial CNF formula are divided into hard ones and soft ones, and 

each soft clause is associated with a positive integer as its weight) [39] in HRS and the flipping variable 

decides the direction of the search, it is reasonable for us to employ a heuristic emphasizing the flipping 

variable to solve HRS. To further improve SLS algorithms for HRS, we focus on proposing two new 

selection heuristics with emphasis on the flipping variable, which is detailed in subsequent Sections 4 

and 5 respectively. 

4. Clause Selection Mechanism with Emphasis on the Flipping Variable 

The strategy of picking an unsatisfied clause is known to be successful for general SAT solving [5]. 

Indeed, the condition that the selected clause is unsatisfied is necessary, as selecting a satisfied clause 

may lead to a local optimum [27]. As can be clearly seen from Algorithm 1, the ProbSAT algorithm 

does not distinguish unsatisfied clauses in each step. In our opinion, this is a disadvantage of ProbSAT 

when it is applied to RS solving. Because each unsatisfied clause varies in how easily it can be converted 

from being unsatisfied to satisfied, selecting from the unsatisfied clauses with equal probability does not 

provide sufficient guidance for SLS algorithms, especially for HRS instances. The number of times an 

unsatisfied clause contains the flipped variable is an indication of how difficult it satisfies the clause. 

We take this observation as the basis for a new clause weighting scheme that distinguishes between 

unsatisfied clauses. 

To improve the performance of ProbSAT on solving SAT, we develop a new clause selection 

mechanism, which separates unsatisfied clauses in each step. The clause selection mechanism includes 

three components as detailed in the subsequent sections: a new clause weighting scheme (named UT), 

hard satisfiable clauses based on UT (HSC-UT), and a biased random walk strategy. 

4.1 A New Clause Weighting Scheme Focusing on the Flipping Variable  

Clause weighting schemes have been used prominently in SLS algorithms for solving SAT [4, 14, 

20, 35], such as DLM [50], PAWS [49], and SAPS [26]. Although these mainstream clause weighting 

SLS algorithms differ in the manner of how clause weights should be updated (probabilistic or 

deterministic), they all choose to increase the weights of all the unsatisfied clauses or reduce the weights 

of all the satisfied clauses as soon as a local minimum is encountered. These mainstream clause 

weighting schemes are simply categorizing clauses into unsatisfied ones and satisfied ones, which are 

also witnessed by mainstream SLS solvers such as Sparrow [4], DCCASat [35], and Score2SAT [17]. 

Moreover, as can be seen from the competition results of the random track of SAT Competitions 2017 

and 2018, these SLS solvers, including Score2SAT, DCCASat, Sparrow, ProbSAT, and Dimetheus [21], 

lost their power and effectiveness on solving HRS. Thus, these clause weighting schemes are not 
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informative enough to guide the SLSs for HRS instances. This motivates us to design a new clause 

weighting scheme that could distinguish unsatisfied clauses in each step in a more effective way. 

Accordingly, we consider a new clause property named UnsatT, which is the number of times that 

a clause is unsatisfied and contains the flipping variable up to a certain step. UnsatT is formally defined 

as below: 

Definition 1. For a clause c, in each step s, UnsatT(c, s) is the number of steps at which a clause was 

unsatisfied while containing the flipping variable up to step s. 

In this sense, UnsatT can be regarded as the generalization of the property of clauses, i.e., UnsatT can 

be widely used to improve the performance of the SLS algorithm like break property [4]. Intuitively, 

clauses with larger UnsatT values are harder to keep satisfied in the search process. Thus, it is beneficial 

for SLS algorithms to satisfy these clauses at the first instance. 

To assign higher priority on clauses with larger UnsatT in clause weights, a new clause weighting 

scheme based on UnsatT is proposed, which only works for the unsatisfied clauses which contain the 

flipping variable during the search steps. The new clause weighting scheme, denoted as UT, works as 

follows: 

▪ At the beginning of the SLS algorithm, after an initial assignment  is generated, for a clause c, 

if c is unsatisfied under , the weight of c (i.e., UnsatT(c, 0)) is set to be 1; otherwise, UnsatT(c, 

0) = 0;  
▪ In search step s, if c is unsatisfied and contains the flipping variable, then UnsatT(c, s) =UnsatT(c, 

s-1) + 1;  
▪ Otherwise, UnsatT(c, s) =UnsatT(c, s-1). 

Accordingly, the proposed algorithm based on UT only checks the unsatisfied clauses containing the 

flipping variable rather than checking all clauses, and thus saving the computation time. Here we utilize 

UT to guide the clause selection, distinguishing itself from previous clause weighting schemes in SLS 

algorithms on picking a variable [4, 14, 35]. 

To pick a clause based on UT, inspired by HCSCCD (Hard Clauses’ States based Configuration 

Changed and Decreasing) variables [39] in SLS algorithms, we introduce the notions of HSC-UT (hard 

satisfiable clause based on UT) and ESC-UT (easily satisfiable clauses based on UT). The formal 

definitions of HSC-UT and ESC-UT are given as follows: 

Definition 2. For a clause c, in search step s, and given a positive integer parameter β, c is called an 

HSC-UT in step s if c is unsatisfied and UnsatT(c, s)≥β. 

Definition 3. For a clause c, in search step s, and given a positive integer parameter β, c is called an 

HSC-UT in step s if c is unsatisfied and UnsatT(c, s)<β. 

In this work, when the SLS algorithm searches to step s, we use the notation HSC-UT(s, β) to denote 

the set of all HSCs-UT in step s and ESC-UT(s, β) to denote the set of all ESCs-UT in step s respectively 

for the given β. In search step s, the union of HSC-UT(s, β) and ESC-UT(s, β) is the set of all unsatisfied 

clauses in search step s for the given β. HSCs-UT is regarded as good candidates for clause selection, 

especially when solving HRS problems. 

4.2 The Biased Random Walk Strategy  

An important component of ProbSAT algorithm is the standard random walk (line 6 in Algorithm 

1). The standard random walk has been utilized prominently in SLS algorithms, including WalkSAT 

[23], ProbSAT, YalSAT [11], and Dimetheus [21]. However, these SLS solvers are ineffective on 
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solving HRS instances, which was also illustrated by recent SAT Competitions. Thus, the standard 

random walk may not be suitable for HRS instances. As discussed in Section 4.1, HSCs-UT is assigned 

higher priority to be satisfied for HRS in the proposed algorithm, and thus it is reasonable for us to adopt 

a biased random walk strategy inspired by the idea from [39], which is utilized to select a clause and 

described as follows: 

▪ At each step s, when a biased random walk is called, if HSCs (s, β) is not empty, then an HSC-

UT clause is selected randomly; 

▪ Otherwise, an ESC-UT clause is selected randomly. 

In summary, in the proposed new SLS algorithm, we replace the standard random walk component 

(lines 6 in Algorithm 1) with the above described biased random walk component. As the biased random 

walk component would select a clause randomly from either HSC-UT(s, β) or ESC-UT(s, β) in any step 

s for a given β, thus a key point to efficiently implement biased random walk is to maintain two clause 

sets during the search process: the set of current HSCs-UT and the set of current ESCs-UT. Following 

the above clause selection scheme, the algorithm will select a variable in the chosen clause, which is 

based on a new variable selection mechanism introduced in the subsequent section. 

5. Variable Selection Heuristic with Emphasis on the Flipping Variable  

In this section, we introduce a new variable selection heuristic with emphasis on the flipping variable, 

named EFV, which is composed of three components: probabilistic variable selection, a new variable 

property (namely vUnsatT), and a tie-breaking strategy based on a new scoring function (called Uv), as 

detailed below. 

5.1 Probabil ist ic Variable Selection  

The break values count the number of clauses that become unsatisfied by flipping a given variable, 

and thus it is natural to give priority to variables that have the smallest break value. Given a selected 

clause, we adopt the probability function f (described in Section 3) used in ProbSAT [5] to 

probabilistically select variables that have smaller break values. However, using only probability-based 

on f may result in the same variable being selected in consecutive steps. To avoid this, a new variable 

property (namely vUnsatT) is introduced to design a new scoring function (called Uv), and then we 

employ a tie-breaking strategy based on Uv. 

5.2 A New Variable Property - vUnsatT  

In SLS algorithms, the method for selecting the variable to be flipped in each step is usually guided 

by a scoring function. A scoring function can be a simple variable property or any mathematical 

expression with one or more properties. The score property minimizes the number of currently 

unsatisfied clauses in CNF. However, as indicated in Section 4.1, simply focusing on the number of 

satisfied clauses and unsatisfied clauses is not informative enough to guide the SLS algorithm, especially 

for HRS. 

Therefore, we consider the number of times each variable appears in those unsatisfied clauses 

containing the flipping variable in each search step. This measurement of a variable can be regarded as 

a new variable property, distinguishing itself from previous variable properties and is defined formally 

as below: 
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Definition 4. For a variable v, in the search step s, vUnsatT(v, s) is the number of steps at which a 

variable v appeared in those unsatisfied clauses while containing the flipping variable up to step s. 

In this sense, vUnsatT can be regarded as the generalization of the property of variables, i.e., 

vUnsatT can also be widely used to improve the performance of the SLS algorithm like score property 

[16]. Intuitively, clauses containing variables with larger vUnsatT are harder to keep being satisfied in 

the search process, and we use vUnsatT to guide the variable selection. The update process of vUnsatT 

is given below. 

▪ After an initial assignment  is generated, for a variable v, if v appears in t unsatisfied clauses 

under , then vUnsatT(v, 0)=t; otherwise, if v does not appear in any unsatisfied clauses, 

vUnsatT(v, 0) =0; 

▪ In search step s, once a flipping variable has been selected, let mv (s) denote the number of times 

that v appears in those unsatisfied clauses while containing the flipped variable in step s. If mv 

(s)0, then vUnsatT(v, s) = vUnsatT(v, s-1) + mv (s);  

▪ Otherwise, if mv (s)=0, vUnsatT(c, s) = vUnsatT(c, s-1). 

Remarks: when the variable property vUnsatT is updated, the algorithm only checks the variables 

that appear in the unsatisfied clauses while containing the flipped variable in step s rather than checking 

all variables and thus saves the computation time. In addition, it can be seen from the function vUnsatT 

(v, s) that, as the step s increases, vUnsatT (v, s) is monotonically increasing with respect to variable v. 

5.3 Scoring Function of Variable –  Uv   

The score property tends to decrease the number of unsatisfied clauses in the greedy mode. The 

vUnsatT property can be used as a heuristic for greedy search as its use tends to reduce the set of HSCs-

UT by flipping a variable of an HSC-UT. 

When deciding the priority of candidate variables to be selected, although score property is more 

important than vUnsatT property, in some cases, vUnsatT should be allowed to overwrite the priorities. 

Given a CNF formula F, the maximum value of score for all variables does not exceed the number of 

clauses during the search process. However, as the search process progresses, the vUnsatT value of each 

variable increases rapidly, and the more step the search proceeds, the larger the value of vUnsatT will 

be. 

To combine score and vUnsatT in a greedy search, we introduce a new scoring function that is a 

linear combination of score and vUnsatT, inspired by the concept of comprehensive score [16]. The 

new scoring function, named Uv (because it is utilized to break the tie of variable as detailed in the 

subsequent section), is defined as follows: 

Definition 5. For a variable v, in search step s, when the assignment is , the scoring function, denoted 

as Uv, is defined as: 
Uv(v, s, ) = score (v, ) + vUnsatT (v, s)/γ, 

where γ is a positive integer parameter, which is used to control the role of vUnsatT value played in the 

scoring function. 

Uv is so simple that it can be computed with little overhead, and the parameter γ can be easily tuned. 

Moreover, its simplicity allows its potential usage in solving many SAT instances and perhaps other 

combinatorial search problems. 
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5.4 The New Tie-breaking Strategy  

In the above sections, some measures or evaluations of a variable property have been discussed 

and form the basis for the new variable selection heuristic. Currently, there are two most popular variable 

selection strategies for solving RS: probability function strategy [6] and CC strategy [14]. 

In ProbSAT, it may result in selecting the same variable in consecutive steps by adopting only the 

probability function f to pick a variable to be flipped, so that it causes useless work in consecutive steps. 

Therefore, based on one idea of CC strategy [13, 38], it is expected to remember each variable’s 

circumstance information and prevents a variable from being flipped if its circumstance has not been 

changed since its last flip, which has been proved to be effective in the SLS algorithm for solving URS 

instances [17, 35]. CC strategy is technically hard to track and realized by selecting a variable from all 

variables in a SAT formula, while our algorithm selects a variable from an unsatisfied clause chosen by 

the biased random walk, i.e., CC-based SLS solvers [13, 14, 16, 17, 35] have only the variable selection, 

while our algorithm needs to select a clause and then select a variable from this selected clause. Thus, 

the CC strategy may not be suitable for our algorithm, and it is reasonable for us to employ a tie-breaking 

strategy that avoids selecting the same variable in consecutive steps. 

The new tie-breaking scheme in the variable selection heuristic is described as follows: 

In our algorithm, if the variable selected by probability at step s is the same as the variable flipped 

in step s-1, a different variable with the greatest Uv value will be selected instead (further ties are broken 

by picking the variable that comes earliest in the clause). 

The proposed tie-breaking strategy is inspired by the idea in the literature [16], but they are 

essentially different from each other due to the fact that the latter may not be suitable for HRS. The main 

difference in our proposal lies in that a variable is mainly selected based on the probability function, and 

there is no need to select one from all those variables with the same minimum break value in the selected 

clause. 

In brief, in the chosen clause based on the EFV heuristic, the new variable selection mechanism is 

achieved by selecting the variables based on the probability function f; once ties occur, a new tie-

breaking strategy breaks ties of variables and selects a variable by preferring the variable with the 

greatest Uv value, which is a linear combination of score and vUnsatT. 

6. The EPEFV Algorithm 

Based on the ProbSAT framework and two selection mechanisms underlying the EFV heuristic 

described in Sections 4 and 5, we present a new SLS algorithm for solving random SAT, named EPEFV 

(Extended Probability strategy with Emphasis on the Flipping Variable) in this section. The pseudo-

code of the EPEFV algorithm is outlined in Algorithm 2. We describe it in detail as follows. 
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Algorithm 2 The EPEFV Algorithm 

Input: CNF-formula F, MaxTries, MaxSteps, γ,  

Output: A satisfying assignment α of F, or Unknown 

1: for i: = 1 to MaxTries do 

2: α := a randomly generated truth assignment; 

3: bestVar := null; 

4:  for j:= 1 to MaxSteps do 

5:  if α satisfies F then return α; 

6:   if HSC-UT(j, ) is not empty then 

7:    C := a clause randomly chosen from HSC-UT(j, ); 

8:   else C := a clause randomly chosen from ESC-UT(j, ); 

9:   v := x C selected with probability 
𝑓(𝑥,𝛼)

∑ 𝑓(𝑧,𝛼)𝑧∈𝐶
; 

10:   if v :== bestVar then 

11:     bestVar := xC, x≠ v, with the greatest Uv (x, s, α) in C, breaking ties with the smallest order; 

12:   else bestVar := v; 

13:   α := α with bestVar flipped; 

14:   update UT and vUnsatT; 
15: return Unknown; 

 

Initially, EPEFV performs the first loop until it finds a satisfying assignment or reaches the first 

limited steps denoted by MaxTries. Then EPEFV generates a complete assignment  at random as the 

initial solution. bestVar is used to record which variable was flipped in the last step (line 3). Then it 

executes the second loop until a solution is found or reaches the second limited steps denoted by 

MaxSteps. The value of MaxSteps and MaxTries are set the same as those in ProbSAT in Algorithm 1. 

In each search step, EPEFV picks a variable to be flipped. EPEFV performs the biased random walk 

component as detailed in Section 4.2 (lines 6-8 in Algorithm 2): if there exists any HSC-UT in any step 

j, a clause is picked randomly from HSC-UT(j, β); otherwise, a clause is picked randomly from ESC-

UT(j, β). The algorithm then picks a variable according to the probability based on f and the new tie-

breaking strategy as detailed in Section 5.3 (lines 9-12 in Algorithm 2): EPEFV picks first a variable by 

the probability based on f (line 9 in Algorithm 2); if the variable is the same as the last flipped variable 

(bestVar), EPEFV selects a variable by preferring the variable with the greatest Uv value (line 11). After 

the variable is selected, the EPEFV flips the selected variable (line 13 in Algorithm 2) and updates the 

clause weights based on the weighting scheme UT as detailed in Section 4.1 and also updates the 

vUnsatT as detailed in Section 5.1 (line 14 in Algorithm 2), then the EPEFV algorithm starts the next 

search step. 

Finally, when the search terminates, if  satisfies all clauses of F, EPEFV outputs  as the solution; 

otherwise, EPEFV reports UNKNOWN. 

7. Experimental Evaluations on HRS Benchmarks 

In this section, we first introduce the benchmark instance sets, the competitors, and the experimental 

setup utilized in our experiments. Then we compare EPEFV with state-of-the-art SLS solvers and 

complete solvers on all HRS testing benchmarks. 

7.1 The Benchmarks  

To make the experimental evaluation more comprehensive, apart from the existing HRS 

benchmarks taken from the latest SAT competitions, additional HRS instances are generated according 
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to the hard random SAT formula tool [9], which randomly generates SAT instances significantly harder 

than URS of the same size. We adopt the following benchmarks for HRS for testing purposes as well. 

1) 4.3HRS Comp17: all HRS instances with r=4.3 from SAT Competition 2017(400≤n≤540, 

40 instances, 5 for each size) 

2) 4.3HRS Testing: HRS instances generated randomly by the hard random SAT formula tool 

(r=4.3, 600≤n≤1000, 1000 instances, 200 for each size) 

3) 5.206HRS Comp17: all HRS instances with r=5.206 from SAT Competition 2017 (400≤n  

≤540, 40 instances, 5 for each size) 

4) 5.206HRS Testing: HRS instances generated randomly by the hard random SAT formula 

tool (r=5.206, 600≤n≤1000, 1000 instances, 200 for each size) 

5) 5.5HRS Comp17: all HRS instances with r=5.5 from SAT Competition 2017(400≤n≤540, 

40 instances, 5 for each size) 

6) 5.5HRS Testing: HRS instances generated randomly by the hard random SAT formula tool 

(r=5.5, 600≤n≤1000, 1000 instances, 200 for each size) 

7) 5.699HRS Training: HRS instances generated randomly by the hard random SAT formula 

tool (r=5.699, 200≤n 

≤1000, 45 instances, 5 for each size) 

8) SAT Comp18: all HRS instances from SAT Competition 2018 (r=4.3, r=5.206, r=5.5, 

200≤n≤400, 165 instances, 55 for each ratio). Note that these HRS instances occupy 65% of 

random benchmark in SAT Competition 2018, indicating that the importance of HRS 

instances has been highly recognized by the SAT community. 

9) 5.699HRS Testing: HRS instances generated randomly by the hard random SAT formula 

tool (r=5.699, 200≤n≤1000, 900 instances, 100 for each size) 

7.2 State-of-the-art  SLS and Complete Competitors  

First of all, the proposed EPEFV algorithm is compared against four SLS solvers including 

Score2SAT [17], Yalsat [11], ProbSAT [6] and Dimetheus [22] as well as four complete solvers 

including Cadical [28], Maple_LCM_Dist_ ChronoBT [46], gluHack [44], and SparrowToRiss [7]. 

Note that ProbSAT is the basic framework of EPEFV and is also the basic framework of Dimetheus 

and YalSAT. Yalsat won the random track of SAT competition in 2017 (RTS2017). As reported in the 

results of 2017 3 , Yalsat significantly outperforms an efficient complete algorithm tch_glucose3. 

Dimetheus is the best SLS solver for URS instances. Dimetheus won the RSC20144 and RSC20165 

and also first place among the SLS algorithms in RSC20186. According to the results of the RTS2016 

and RTS2018, Dimetheus performs much better than DCCAlm [37], CSCCSat [36], YalSAT, and 

ProbSAT. In our experiments, we use the versions of Dimetheus, ProbSAT, and Yalsat submitted to 

RTS2018. The Score2SAT algorithm is the best SLS solver for HRS and won third place in RTS2017. 

 
3https://baldur.iti.kit.edu/sat-competition-2017/results/random.csv.  
4www.satcompetition.org/2014 /results.shtml. 
5https://baldur.iti.kit.edu/sat-competition-2016/index.php?cat=results. 
6http://sat2018.forsyte.tuwien. ac.at/index.php?cat=results. 

http://www.satcompetition.org/2014%20/results.shtml
https://baldur.iti.kit.edu/sat-competition-2016/index.php?cat=results
http://sat2018.forsyte.tuwien/
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In our experiments, the Score2SAT is downloaded from the webpage of SAT Competition 2017. 

SparrowToRiss (denoted by STR for convenience) is a complex solver among preprocessor CP3 

[41], Sparrow [4], and Riss [7], and is the best complete solver for HRS, and won the RTS2018. As 

reported in the results of the RTS2018, STR shows superiority over Dimetheus. The algorithm gluHack 

is an efficient complete solver and won the silver of RTS2018. For STR and gluHack, we use the binary 

from SAT Competition 2018. MapleLCMDistChronoBT (denoted by MBT) won the main track of 

2018 SAT Competition (MTS2018). In our experiments, the binary of MBT is the one submitted to 

MTS2018. Cadical is the best complete solver for application instances and solved the most instances 

in MTS2019. In our experiments, the source code of Cadical can be downloaded online7. 

7.3 Experimental  Preliminaries  

EPEFV is implemented in C. We tuned the β and γ parameters of EPEFV according to our 

experience. Accordingly, the optimal parameters are summarized in Table 1. For 𝑐1 and  𝑐2, we utilize 

the default parameter setting tuned in the literature [7]. 

 

Table 1 

Parameters settings of β and γ for EPEFV on solving HRS benchmarks. 

Variable n 
       r≤4.3            4.3<r<5.5            r≥5.5 

β γ β γ β γ 

n≤400 
0 1000 

215 
321 

2380 

911 

400<n≤600 961 

n>600 3 1022 1212 1205 

 

All experiments are carried out on the machine under a 64-bit Ubuntu Linux Operation System, 

using 2 cores of Intel(R) Core (TM) i7-6700M 3.4 GHz CPU and 16 GB RAM. Each run that terminates 

in finding a satisfying assignment within the cutoff time is successful. The cutoff time is set to 5000 

seconds for the 4.3HRS Comp17 benchmark, 5.206HRS Comp17 benchmark, 5.5HRS Comp17 

benchmark, and SAT Comp18 benchmark (as in SAT Competitions 2017, 2018, and 2019), and 600 

seconds for the rest benchmarks (as in the literature [9]). 

For the HRS instances from SAT Competition 2017, we run each solver 10 times for each instance. 

For the HRS instances randomly generated and the SAT Comp18, we run each solver one time for each 

instance, as the instances in each ratio are sufficient to test the performance of the solvers [16]. 

For performance metrics, we report successful runs (“suc”) and the penalized average run time 

(“par 2”) (an unsuccessful run is penalized as double cutoff time) (as in SAT Competitions). The best 

results for an instance class are highlighted in bold. If a solver has no successful run for a group of 

instances, the corresponding ‘par 2’ is marked with “-”. 

7.4 Experimental  Results  

In this subsection, we summarize the experimental results of EPEFV compared with its SLS and 

complete competitors on the testing benchmarks for HRS as introduced in Section 7.1. 

Table 2 presents the comparative experimental results of EPEFV with its SLS competitors 

Score2SAT, YalSAT, Dimetheus as well as ProbSAT and complete competitors gluHack, STR, MBT 

and Cadical on 4.3HRS Comp17 benchmark, 4.3HRS testing benchmark, 5.206HRS Comp17 

 
7http://sat-race-2019.ciirc.cvut.cz/  
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benchmark, 5.206HRS Testing benchmark, 5.5HRS Comp17 benchmark, 5.5HRS Testing benchmark, 

SAT Comp18 benchmark and 5.699HRS testing benchmark (Detailed breakdown results are shown in 

Tables 1- 5 in the Appendix).  

Table 2 shows that EPEFV is clearly the best solver on these benchmarks of HRS instances. 

EPEFV gives the best performance for all HRS instance classes except for 4.3HRS Comp17 and 

4.3HRS testing, and especially it solves more 5.206HRS Testing, 5.5HRS Testing, and 5.699HRS 

testing instances than all other solvers. Given the good performance of EPEFV on 5.206HRS Testing 

benchmark with up to1000 variables, it is very likely that it could be able to solve larger HRS instances 

with r=5.206, r=5.5, and r=5.699. For 4.3HRS Comp17 and 4.3HRS testing, EPEFV solves as many 

instances as all SLS competitors, but par 2 is a little more than those of all SLS competitors. These 

experimental results confirm the good performance of EPEFV on the HRS benchmarks in SAT 

Competition 2018, where it also solved more HRS instances than all SLS competitors and spent less 

time than all complete competitors. 

Table 2 

Computational results on the HRS instances. 

Benchmark 

Score2SAT 

suc 

par2 

YalSAT 

suc 

par2 

Dimetheus 

suc 

par2 

ProbSAT 

suc 

par2 

gluHack 

suc 

par2 

STR 

suc 

par2 

MBT 

suc 

par2 

Cadical 

suc 

par2 

EPEFV 

suc 

par2 

4.3HRS 

Comp17 

400 

0.020 

400 

0.017 

400 

0.057 

400 

0.062 

290 

3481 

400 

0.117 

270 

3641 

350 

1625 

400 

0.023 

4.3HRS 

Testing 

1000 

0.028 

1000 

0.017 

1000 

0.028 

1000 

0.024 

40 

1347 

1000 

0.376 

0 

- 

80 

1119 

1000 

0.223 

5.206HRS 

Comp17 

30 

9250 

0 

- 

0 

- 

0 

- 

380 

863.2 

400 

5.709 

400 

67.64 

380 

1179 

400 

0.039 

5.206HRS 

Testing 

0 

- 

0 

- 

0 

- 

0 

- 

80 

323.2 

800 

261.2 

193 

1010 

120 

1642 

1000 

0.079 

5.5HRS 

Comp17 

90 

7750 

90 

7750 

90 

7750 

90 

7750 

400 

24.90 

400 

151.0 

400 

3.785 

400 

15.23 

400 

0.662 

5.5HRS 

Testing 

160 

1008 

160 

1008 

160 

1008 

160 

1008 

360 

839.8 

460 

650.3 

920 

158.1 

440 

751.6 

1000 

1.298 

SAT 

Comp18 

100 

3939 

94 

4349 

79 

5526 

79 

5259 

165 

5.476 

165 

45.82 

165 

4.544 

165 

21.13 

165 

0.128 

5.699HRS 

Testing 

0 

- 

0 

- 

0 

- 

0 

- 

600 

438.1 

520 

608.7 

800 

179.7 

559 

473.4 

900 

0.768 

8. Experimental Evaluations on URS Benchmarks  

Section 7 is focused on a comprehensive evaluation of the performance of EPEFV compared with 

the SLS and complete competitors on the existing HRS benchmarks from the latest SAT competitions 

(2017 and 2018), along with additional HRS instances generated according to the hard random SAT 

formula tool [9]. To show the generality and applicability of the proposed EPEFV algorithm, additional 

experiments on the uniform random k-SAT (URS) benchmarks are carried out, and the results are 

summarized in this section. More specifically, results of extensive experiments to evaluate EPEFV on 

uniform k-SAT instances with long clauses are provided, now that URS with long clauses remains 

challenging for SLS solvers. 

8.1 The Benchmarks and Experiment preliminaries  

 To make the experimental evaluation more comprehensive, apart from the existing URS 

benchmarks from the latest SAT Competitions (2016 and 2017), additional URS instances are generated 



15 

 

according to the URS generator8, with additional application instances from SAT Race 2019. Specially, 

we adopt the following benchmarks: 

1) SAT Competition 2017: all random k-SAT instances with k>3 from SAT Competition 2017 

(120 instances, 60 for each k-SAT, k=5, 7), which vary in both size and ratio. These instances 

count 67% of the random URS benchmark in SAT Competition 2017 (these instances occupy 

40% of all random benchmark including URS and HRS in SAT Competition 2017). The 

instances at r=21.117 vary from 200 variables to 590 variables, and with n=250000 vary from 

16.0 ratios to 19.8 ratios for 5-SAT. The instances at r=87.79 vary from 90 variables to 168 

variables, and with n=50000 vary from 55.0 ratios to 74.0 ratios for 7-SAT. 

2) 5-SAT medium: all URS instances at phase transition generated randomly according to the 

URS generator (r=21.117, n=200, 250, 300, 60 instances, 20 for each size) 

3) 7-SAT medium: all URS instances at phase transition generated randomly according to the 

URS generator (r=87.79, n=100, 110, 120, 60 instances, 20 for each size) 

4) SAT Competition 2016 medium: all random k-SAT instances at phase transition with long 

clauses (80 instances, 40 for each k-SAT, k=5, 7). The instances at r=21.117 vary from 200 

variables to 590 variables for 5-SAT, and the instances at r=87.79 vary from 90 variables to 

168 variables for 7-SAT. 

5) 5-SAT huge: all URS instances whose ratios are not that close to phase transition while they 

have huge sizes generated randomly according to the URS generator (r=18.0, 18.2, 18.4, 

n=250000, 150 instances, 50 for each size) 

6) 7-SAT huge: all URS instances with huge sizes generated randomly according to the URS 

generator (r=64, 65, 66 n=50000, 150 instances, 50 for each size) 

The parameter settings are determined according to our experience for β and γ are summarized in 

Table 3. 

Table 3 

Parameters settings of β and γ for EPEFV on solving URS benchmarks. 

k-SAT 
huge medium 

β γ β γ 

5-SAT 
800 50 

10000000 50000000 

7-SAT 50000000 20000000 

 

The computing environments for the experiments are the same as those utilized for experiments in 

Section 7. We perform each solver 10 runs for each instance from SAT Competitions in 2017 and 2016. 

For the remaining benchmarks, each solver is performed one run on each instance. Each run that 

terminates in finding a satisfying assignment within the cutoff time is successful. The cutoff time is set 

to be 5000 seconds. We report successful runs (“suc”) and the penalized average run time (“par 2”) (as 

in SAT Competitions). The best results for an instance class are highlighted in bold. If a solver has no 

successful run for a group of instances, the corresponding ‘par 2’ is marked with “-”. 

8.2 Experimental  results  

In the following, we present the comparative experimental results of EPEFV and its competitors 

on each benchmark. 

 
8https://sourceforge.net/projects/ksat generator/  
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Table 4 presents the comparative results of EPEFV with its SLS competitors Score2SAT, YalSAT, 

Dimetheus as well as ProbSAT on SAT Competition 2017 benchmark, SAT Competition 2016 

benchmark, 5-SAT medium benchmark, 7-SAT medium benchmark, 5-SAT huge benchmark, and 7-

SAT huge benchmark (Detailed breakdown results are shown in Tables 6- 10 in the Appendix).  

Since EPEFV is based on ProbSAT, we first compare these two solvers. As shown in Table 4, 

EPEFV solves more instances than ProbSAT on all instance classes except for the 7-SAT medium. For 

each benchmark, ProbSAT succeeds in 533 runs, 321 runs, 29 runs, 32 runs, 48 runs, 97 runs 

respectively, while EPEFV succeeds in 621 runs, 330 runs, 30 runs, 30 runs, 150 runs, 150 runs 

respectively. 

According to Table 4, EPEFV solves a few more instances than Score2SAT, YalSAT, and 

Dimetheus. Further observation shows that EPEFV has similar performance with all SLS competitors 

on 5-SAT medium and 7-SAT medium instances, and has similar performance as the best solver 

Dimetheus on 5-SAT huge and 7-SAT huge instances, but with less time. 

Table 4 

Computational results on the URS instances. 

Benchmark Class 
Dimetheus ProbSAT YalSAT Score2SAT EPEFV 

suc par2 suc par2 suc par2 suc par2 suc par2 

SAT Competition 2017 592 5173 533 5713 510 5890 534 6077 621 5138 

5-SAT medium 31 4895 29 5260 31 5014 29 5360 30 5133 

7-SAT medium 33 4690 32 4857 33 4857 33 4622 30 5134 

SAT Competition 2016 

medium 
311 6383 321 6239 282 6657 311 4808 330 6102 

5-SAT huge 150 626.5 48 7073 96 4260 50 7927 150 1552 

7-SAT huge 150 318.9 97 3812 21 10721 91 6303 150 473.1 

9. Discussions 

In this section, we present a detailed discussion of the EPEFV algorithm on HRS benchmarks. First, 

we conduct further empirical analyses to reveal the relationship between UnsatT and vUnsatT, and 

present the effectiveness of each underlying component in the EFV heuristic. Then we discuss the major 

differences between EPEFV and ProbSAT. Finally, we discuss the main differences between the clause 

weighting scheme UT and the popular clause weighting schemes PAWS and SWT.  

9.1 Relationship between UnsatT  and vUnsatT  as well  as Their Impact on the 

Effectiveness of the EFV Mechanism 

In this subsection, we illustrate the impact of UnsatT and vUnsatT on the effectiveness of the EFV 

heuristic through both theoretical and experimental analysis. 

 Intuitively, in a clause c, if the maximum difference between vUnsatT and UnsatT is so small that  

all variables in c are not connected to other clauses, then the vUnsatT property becomes ineffective 

because the tie-breaking strategy depends only on the score function of the variable. We will go deep 

into this intuition by analyzing the relationship between UnsatT and vUnsatT in HRS instances and 

demonstrating their influence on the effectiveness of the variable selection heuristic. 

For a HRS formula F, when EPEFV performs until step s, for the relationship between UnsatT and 

vUnsatT in F, we have the following conclusion. 

Theorem 1. For a CNF formula F, when EPEFV runs to step s, for a clause c and a variable v 

with the minimum vUnsatT in c, the least upper bound of UnsatT(c, s) is equal to vUnsatT(v, s) in c. 
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Proof. In a CNF formula, suppose c includes p+1variables, i.e., c=v˅𝑣1˅ 𝑣2˅ …˅ 𝑣𝑝. For a 

variable v, there exists at least a clause c where v appears in F. Suppose v appears in t+1 clauses, i.e., c, 

𝑐1
𝑣, 𝑐2

𝑣, …, 𝑐𝑡
𝑣. Note that vUnsatT(v, s)= UnsatT(c, s)+ UnsatT(𝑐1

𝑣, s)+ UnsatT(𝑐2
𝑣, s)+…+ UnsatT(𝑐𝑡

𝑣, 

s), since vUnsatT(v, s)>0 and vUnsatT is a nonnegative integer according to its definition in Section 5, 

and UnsatT(c, s)>0 and UnsatT is a nonnegative integer based on its definition in Section 4, we can 

obtain that vUnsatT(v, s)≥UnsatT(c, s). 

Suppose 𝑣1 appears in (𝑡1) +1 clauses, i.e., c, 𝑐1
𝑣1 , 𝑐2

𝑣1 , …, 𝑐𝑡1

𝑣1 . Note that vUnsatT(𝑣1, s)= 

UnsatT(c, s)+ UnsatT(𝑐1
𝑣1, s)+ UnsatT(𝑐2

𝑣1, s)…+ UnsatT(𝑐𝑡1

𝑣1, s), since vUnsatT(𝑣1, s)>0 and vUnsatT 

is a nonnegative integer, and UnsatT(c, s)>0 and UnsatT is a nonnegative integer, we can easily obtain 

vUnsatT(𝑣1, s)≥UnsatT(c, s). For the same reason, we can easily obtain vUnsatT(𝑣2, s)≥UnsatT(c, s), 

vUnsatT(𝑣3, s)≥UnsatT(c, s),…, vUnsatT(𝑣𝑝, s)≥UnsatT(c, s).  

As vUnsatT(v, s) is the minimum vUnsatT in c, min{vUnsatT(v, s), vUnsatT(𝑣1, s), vUnsatT(𝑣2, 

s),…, vUnsatT(𝑣𝑝 , s)}= vUnsatT(v, s)≥UnsatT(c, s). Thus the least upper bound of c’s UnsatT is 

vUnsatT(v, s) in c.  

We summarize some experimental statistics in Table 5 in order to verify these theoretical 

expectations (the details of all HRS Testing benchmarks can be seen in Section 7.1), where min∆min 

is the minimum values of vUnsatT minus UnsatT, and max∆max is the maximum values of vUnsatT 

minus UnsatT. As can be clearly seen from Table 5, min∆min is equal to or greater than 0 in each class. 

Thus, the experimental results are consistent with the theoretical ones. 

Table 5 

The size of vUnsatT minus UnsatT in an HRS formula. It shows when EPEFV performs step 10000, the experimental minimum 

and maximum size of vUnsatT minus UnsatT of each clause on 100 instances for each class. 

Variable size 
4.3HRS Testing 5.206HRS Testing 5.5HRS Testing 5.699HRS Testing 

min∆min max∆max min∆min max∆max min∆min max∆max min∆min max∆max 

n=200 0 272 0 813 0 1029 0 920 

n=300 0 455 0 509 0 917 0 650 

n=400 0 390 0 566 0 648 0 457 

n=500 0 364 0 411 0 673 0 559 

n=600 0 261 0 299 0 511 0 362 

n=700 0 272 0 288 0 362 0 280 

n=800 0 259 0 231 0 361 0 281 

n=900 0 195 0 221 0 378 0 285 

n=1000 0 208 0 221 0 344 0 205 

 

As explained in Section 4, two mechanisms are underlying the EFV heuristic, i.e., the clause selection 

mechanism including two components: the new clause weighting scheme focusing on the unsatisfied 

clauses of containing flipping variable and the biased random walk, and the variable selection 

mechanism only containing one component: the new tie-breaking strategy. Thus, to demonstrate the 

effectiveness of components (i.e., vUnsatT and UnsatT) in the EFV heuristic, we conduct experiments 

to compare EPEFV with the four alternative versions in the following: 

• EPEFV_alt1: This alternative version of EPEFV does not utilize the new clause weighting scheme, 

i.e., does not use the UnsatT (i.e., removing update clause weights UT of line 14 in Algorithm 2, 

or replacing the biased random walk component, i.e., lines 6-8 in Algorithm 2, with the standard  

random walk component, i.e., line 6 in Algorithm 1); 

• EPEFV_alt2: This alternative version of EPEFV does not use the tie-breaking strategy in the 

variable selection mechanism. In other words, this alternative version does not select a variable to 

be flipped based on the Uv function during the search process, i.e., does not use the vUnsatT 
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property (i.e., removing lines 10-12 and update variable property vUnsatT of line 14 in Algorithm 

2); 

• EPEFV_alt3: This alternative version of EPEFV uses the new tie-breaking strategy in the variable 

selection mechanism, but the Uv function only uses score (i.e., replacing the Uv function, i.e., line 

11 and variable property vUnsatT of line 14 in Algorithm 2, with the score); 

• EPEFV_alt4 (ProbSAT): This alternative version of EPEFV does not use UT and the tie-breaking 

strategy. i.e., does not use the UnsatT property and the vUnsatT property (i.e., removing lines 6-8, 

10-12, and 14 in Algorithm 2, i.e., replacing Algorithm 2 with Algorithm 1). 

To make the experiment more convincing, parameter γ of EPEFV__alt1, parameter β of 

EPEFV__alt2 and EPEFV__alt3 are set to be the same as those in EPEFV, and we use these parameters 

in the experiments. Each solver is performed on each instance, with a cutoff time of 600 seconds. 

Table 6 

Experimental results of EPEFV and its three alternative versions on all testing HRS benchmarks.  

Benchmarks #inst 
EPEFV EPEFV_alt1 EPEFV_alt2 EPEFV_alt3 EPEFV_alt4 

suc par2 suc par2 suc par2 suc par2 suc par2 

4.3HRS Comp17 40 40 0.023 40 0.006 40 0.009 40 0.049 40 0.057 

4.3HRS Testing 1000 1000 0.223 960 48.09 1000 0.021 1000 0.027 1000 0.023 

5.206HRS Comp17 40 40 0.039 0 - 39 30.05 40 0.042 0 - 

5.206HRS Testing 1000 1000 0.079 0 - 1000 0.090 1000 0.089 0 - 

5.5HRS Comp17 40 40 0.662 9 930 22 540.36 29 330.5 9 960 

5.5HRS Testing 1000 1000 1.298 80 1104 360 768.3 280 864.3 160 1008 

SAT Comp18 165 165 0.128 71 683.6 145 1200 152 94.66 79 5259 

5.699HRS Testing 900 900 0.768 0 - 900 1.074 900 0.973 0 - 

 

Table 7 

Implementation rate of three components (β of UT, tie-breaking, r of tie-breaking) of EPEFV and its three alternative versions 

on HRS benchmarks. 

Benchmarks 
EPEFV EPEFV_alt1 EPEFV_alt2 EPEFV_alt3 

rate(β) rate(tie) rate(r) rate(tie) rate(r) rate(β) rate(β) rate(tie) 

4.3HRS Comp17 1.000 0.038 0.023 0.037 0.023 0.584 0.656 0.092 

4.3HRS Testing 0.998 0.027 0.023 0.033 0.016 0.957 0.983 0.036 

5.206HRS Comp17 0.286 0.100 0.087 / / 0.584 0.284 0.101 

5.206HRS Testing 0.291 0.099 0.037 / / 0.524 0.298 0.100 

5.5HRS Comp17 0.528 0.151 0.149 0.053 0.008 0.675 0.598 0.141 

5.5HRS Testing 0.540 0.153 0.150 0.062 0.047 0.677 0.547 0.152 

5.699HRS Testing 0.371 0.124 0.121 / / 0.566 0.383 0.126 

 

Empirical results for EPEFV and its four alternative versions on all testing HRS benchmarks (in 

Section 7.1) are reported in Table 6 and Table 7. Table 6 presents experimental results in term of 

successful runs and par 2, and Table 7 reports average rate, i.e., steps of performing each component 

(i.e., steps of UnsatT >β, steps of performing tie-breaking, the steps of vUnsatT >γ) divided by total 

steps for solving each HRS benchmark respectively, denoted by “rate(β)”, “rate(tie)”, and “rate(γ)” 

respectively. If a solver has no successful run for a group of instances, the corresponding average rate’ 

is marked with “/”. 

By comparing EPEFV and EPEFV_alt2 in Table 6, EPEFV overall outperforms EPEFV_alt2 in 

term of successful runs on each benchmark, and rate(tie) of EPEFV is at least 0.1 on HRS instances 

with r≈5.206, r=5.5 and r=5.699 in Table 7, which indicate that the new tie-breaking strategy contributes 

to the performance of EPEFV on several HRS instances with r≈5.206, r=5.5 and r=5.699. 
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The comparative results of EPEFV_alt2 and EPEFV_alt4 shows that EPEFV_alt2 performs better 

than EPEFV_alt4 on all testing HRS benchmarks, and according to Table 7, the rate(β) of EPEFV_alt2 

is larger than 0.50 for each benchmark, which indicates that UnsatT property improves ProbSAT on 

several HRS instances with r=4.3, r≈5.206, r=5.5 and r=5.699. Then the comparison between EPEFV 

and EPEFV_alt3 in Table 6 illustrates that EPEFV performs better than EPEFV_alt3 on all testing HRS 

benchmarks except for the 4.3HRS Testing benchmark. However, the rate(tie) of EPEFV_alt3 is similar 

to the rate(tie) of EPEFV for each benchmark. Thus, we confirm that vUnsatT property plays a 

significantly important role in EPEFV. 

As can be seen from Table 6, the comparison between EPEFV and EPEFV_alt1, EPEFV_alt2 and 

EPEFV_alt3 shows that EPEFV outperforms its four alternative versions in terms of par 2 on HRS 

instances with r=5.206, r=5.5 and r=5.699, where the rate(γ) is at least 0.03, while it has similar 

performance as EPEFV_alt2 on HRS instances with r=4.3, where the rate(γ) is smaller than 0.03. We 

conjecture that the vUnsatT property becomes ineffective when the rate(γ) is smaller than 0.03. 

Furthermore, we will theoretically analyze the influence of vUnsatT property on the new tie-breaking 

strategy. 

For a clause c, suppose c={𝑣1, 𝑣2, 𝑣3}, EPEFV runs to step s, min{vUnsatT(𝑣1, s), vUnsatT(𝑣2, 

s), vUnsatT( 𝑣3 , s)}= vUnsatT( 𝑣2 , s), max{vUnsatT( 𝑣1 , s), vUnsatT( 𝑣2 , s), vUnsatT( 𝑣3 , s)}= 

vUnsatT(𝑣1, s). If EPEFV needs to perform the new tie-breaking strategy, then EPEFV will select a 

variable with the maximum Uv value. The difference between Uv (𝑣1, s) and Uv (𝑣2, s) is denoted by 

∆12U. 

∆12U= Uv (𝑣1, s)- Uv (𝑣2, s). 

Based on Theorem 1, we can easily obtain the difference between vUnsatT and UnsatT, denoted by 

∆, respectively as follows: 

∆1=vUnsatT (𝑣1, s-1)- UnsatT (c, s-1)   

∆2=vUnsatT (𝑣2, s-1)- UnsatT (c, s-1) 

Let ∆max be the maximum difference between vUnsatT and UnsatT in c, i.e., 

∆max= ∆1 

Then Let ∆12score be the difference between score (𝑣1, s) and score (𝑣2, s), and the difference 

between ∆1 and ∆2 is ∆12, thus 

∆12U= Uv (𝑣1, s)- Uv (𝑣2, s) 

= score (𝑣1, s) + vUnsatT (𝑣1, s)/γ- score (𝑣2, s) + vUnsatT (𝑣2, s)/γ 

= score (𝑣1, s)- score (𝑣2, s)+( vUnsatT 𝑣1, s)- vUnsatT (𝑣2, s))/γ 

=∆12score+( UnsatT (c, s-1)+ ∆1- UnsatT (c, s-1)- ∆2)/ γ 

=∆12score+∆12/γ≤∆12score+∆max/γ. 

We calculate the difference between Uv (𝑣1, s) and Uv (𝑣2, s), which is related to ∆12score and γ as 

well as ∆12. When ∆12 is equal to or larger than γ, vUnsatT property is able to influence the EPEFV 

algorithm, i.e., when ∆max is smaller than γ, EPEFV depends only on the score function of each variable. 

These maximum ∆max values are listed in Table 5 for each class with EPEFV running to step 10000. 

It is shown in Table 5that the maximum ∆max values of HRS instances with r≈5.206, r=5.5, and 

r=5.699 are larger than both HRS instances with r=4.3 for each variable size. Thus, the larger the 

vUnsatT value is, the more likely the rate(γ) is at least 0.03, the more effective the EPEFV algorithm 

will be. 

Thus, EPEFV generally is better than its all four alternative versions, which indicates the 

effectiveness of all components of the proposed EFV heuristic. 
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9.2 Main Differences between EPEFV and ProbSAT 

Although the EPEFV algorithm is conceptually related to the ProbSAT algorithm [6], there exist 

major differences between EPEFV and ProbSAT. In this subsection, we summarize these major 

differences as follows: 

• Clause weighting scheme: EPEFV employs a new clause weighting scheme that only works on 

the unsatisfied clauses containing the flipping variable, while ProbSAT does not use any clause 

weighting schemes. 

• Clause selection component: To give a higher priority to HSC-UT, the EPEFV algorithm applies 

a biased random walk strategy to select an HSC-UT, while the ProbSAT algorithm uses a standard 

random walk strategy. 

• Variable selection mechanism: If the current variable selected based on probability is the same 

as the last flipped variable, the EPEFV algorithm prefers to select a variable to be flipped by the 

new tie-breaking strategy preferring the variable with the greatest Uv, while the ProbSAT algorithm 

does not distinguish the current variable selected and the last flipped variable, if it simply uses the 

probability function f to pick the variable to be flipped. 

• Empirical performance on HRS benchmarks: Overall, as can be seen clearly from the extensive 

experiments illustrated in Tables 2- 5 as well as Table 6, the EPEFV algorithm generally performs 

much better than the ProbSAT algorithm on a wide range of HRS benchmarks, indicating that the 

significant performance improvements of EPEFV over ProbSAT are due to the above major 

differences between these two SLS algorithms. 

9.3 Main differences between UT and SWT, PAWS 

As the popular clause weighting schemes SWT [14] and PAWS [49] have been successfully applied 

to SLS algorithms for solving SAT problems, in this subsection, we discuss the main differences 

between UT and SWT, PAWS for solving HRS instances. Before getting into the details of discussion, 

we first introduce two clause weighting schemes: 

• PAWS weighting scheme. PAWS has been used prominently in SLS algorithms for picking a 

variable to be flipped [16, 35]. The weight of each clause is a positive integer and is initiated as 1. 

When a local optimum is reached, the clause weights are updated as follows. With probability p, 

for each satisfied clause whose weight is large than one, its weight is decreased by one; with 

probability (1-p), the weights of all unsatisfied clauses are increased by one. 

• SWT weighting scheme. SWT has been used successfully in SLS algorithms for picking a 

variable to be flipped [14]. SWT resembles in some respect the SAPS scheme [26]. The clause 

weights are updated for solving SAT by SWT as follow: all clause weights are initialized as 1; 

whenever SWT is called, the weights of all unsatisfied clauses are increased by one; further, if the 

average weight �̅� exceeds a threshold γ, it smooths all clause weights as w(c)=p·w(c)+ (1-p)·�̅�, 

where 0<p<1.  

On the one hand, although conventional PAWS and SWT strategies are utilized to pick a variable 

(such as CSCCSat, Score2SAT, Sparrow, and so on), they become ineffective for solving HRS instances. 

In order to demonstrate the effectiveness of components in the clause weighting scheme UT, we conduct 

experiments to compare EPEFV with the two alternative versions in the following. 

• EPEFV_alt5: This alternative version of EPEFV utilizes PAWS rather than the new clause 

weighting scheme (i.e., replacing the UT with the PAWS, i.e., line 14 in Algorithm 2, with the 

PAWS). 
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• EPEFV_alt6: This alternative version of EPEFV utilizes SWT instead of the new clause weighting 

scheme (i.e., replacing the UT with the SWT, i.e., line 14 in Algorithm 2, with the SWT). 

The parameter settings are determined according to our experience for EPEFV’s two alternative 

versions. The parameter settings found for EPEFV_alt5 and EPEFV_alt6 are summarized in Table 8, 

and we use these parameter settings in the subsequent empirical study. 

Table 8 

The parameter settings for EPEFV_alt5 and EPEFV_alt6 on HRS benchmarks with r=4.3, r=5.206, r=5.5 and r=5.699. 

Instance types variable sizes 
EPEFV_alt5 EPEFV_alt6 

γ β p γ β p 

4.3HRS 
n<600 1100 100 0.2 1000 200 0.9 

n≥600 200 200 0.9 100 700 0.7 

5.206HRS 
n<600 800 220 0.9 320 400 0.7 

n≥600 800 80 0.6 800  80 0.6 

5.5HRS/5.699HRS 
n<600 1500 30 0.1 900 1000 0.4 

n≥600 800 2000 0.1 200 1200 0.2 

Table 9 

Experimental results of EPEFV and its two alternative versions on all testing HRS benchmark. 

Benchmarks numbers 
EPEFV EPEFV_alt5 EPEFV_alt6 

suc par2 suc par2 suc par2 

4.3HRS Comp17 40 40 0.023 40 0.012 40 0.028 

4.3HRS Testing 1000 1000 0.223 960 48.05 1000 0.406 

5.206HRS Comp17 40 40 0.039 0 - 0 - 

5.206HRS Testing 1000 1000 0.079 0 - 0 - 

5.5HRS Comp17 40 40 0.662 9 987.6 9 987.6 

5.5HRS Testing 1000 1000 1.298 80 1104 80 1104 

SAT Comp18 165 165 0.125 76 649.5 76 647.7 

5.699HRS Testing 900 900 0.768 0 - 0 - 

 

Empirical results for EPEFV and its two alternative versions on all testing HRS benchmarks (in 

Section 7.1) are reported in Table 9. As can be seen from Table 9, due to the replacement of the SWT or 

PAWS by the UT, EPEFV_alt5 and EPEFV_alt6 perform much worse than the EPEFV on the testing 

HRS instances with r=4.3, r=5.206, r=5.5, and r=5.699, although EPEFV_alt5 is faster than EPEFV on 

solving HRS instances with r=4.3 and n<600, which indicates the effectiveness of the new clause 

weighting scheme UT and confirms that the proposed EFV heuristic contributes the performance of 

EPEFV on such instances. 

 We discuss the main differences between UT and SWT, PAWS in detail as follows.  

• Initial clause weighting scheme: The initial clause weights of UT are set to be 1 for just the 

unsatisfied clauses under the initial assignment, while that of SWT and PAWS are set to be 1 for 

all clauses. 

• Object to update clause weighting scheme: The clause weighting scheme UT only works for the 

unsatisfied clauses containing the current flipping variable, while SWT works for all unsatisfied 

clauses and PAWS works for all unsatisfied clauses or satisfied clauses. 

• Goal to activate the clause weighting scheme: The clause weighting scheme UT is activated to 

pick a clause, while conventional SWT and PAWS are activated to select a variable (noting that 

SWT and PAWS are activated to select a clause in EPEFV_alt5 and EPEFV_alt6 respectively). 

• Empirical performance on HRS benchmarks: According to the experimental results presented 

in Table 9, EPEFV generally outperforms EPEFV_alt5 and EPEFV_alt6 in terms of metrics, and 

thus SWT and PAWS are likely unsuitable for solving HRS instances, indicating that UT gains a 
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significant improvement over SWT and PAWS for HRS instances with r=4.3, r≈5.206, r=5.5, and 

r=5.699. 

10. Conclusions and Future Work 

In this work, a new selection heuristic with emphasis on the flipping variable, called EFV, was  

introduced to improve SLS algorithms for solving the HRS as well as URS with long clauses. By 

incorporating the EFV heuristic into one of the SLS solver ProbSAT, a new SLS algorithm named 

EPEFV (Extended Probability strategy with Emphasis on the Flipping Variable) was proposed to solve 

HRS and URS with long clauses. 

To demonstrate the effectiveness and the robustness of the EPEFV algorithm, we first evaluated 

EPEFV on the HRS benchmarks including the latest HRS benchmarks from the random track of SAT 

Competitions in 2017 and 2018, and additional a broad range of randomly generated HRS benchmarks. 

Our experimental results showed that EPEFV significantly outperformed the SLS algorithms namely 

Dimetheus, ProbSAT, YalSAT, Score2SAT and the complete algorithms including Cadical, 

MapleLCMDist- ChronoBT, gluhack, and SparrowToRiss on all those HRS benchmarks, indicating 

that EPEFV established a new state-of-the-art on SLS and complete algorithms for solving HRS in 

terms of success rate and efficiency. Particularly, on several HRS instances with r=4.3, r≈5.206, r =5.5, 

and r =5.699, the results showed that the current SLS as well as the complete algorithms either have 

limited success rates or could not find solutions quickly (e.g., within the cutoff time of 600 CPU 

seconds), but EPEFV algorithm is able to solve all these HRS benchmarks with 100% success rate and 

efficient within a few seconds.  

Secondly, we conducted experiments on URS benchmarks to compare the EPEFV with state-of-

the-art SLS competitors. The experimental results showed that EPEFV significantly outperformed these 

SLS competitors on solving URS instances with long clauses from the random track of SAT 

Competitions in 2016 and 2017. 

Furthermore, we perform more empirical evaluations to analyze the effectiveness of the EFV 

heuristic, where the experimental results confirmed the effectiveness of each underlying component in 

the EFV heuristic and demonstrated that the EFV heuristic contributes to the performance of EPEFV 

on HRS benchmarks. Also, we conducted empirical evaluations to compare the influence of different 

clause weighting schemes on the EPEFV, and the experimental results showed that UT is the most 

suitable clause weighting scheme on the EPEFV algorithm for solving the HRS problems. 

Based on the above evaluations, it was clearly evidenced and concluded that the EPEFV can be  

considered as a new state-of-the-art SLS solver for HRS instances and URS instances with long clauses  

(The most advanced solvers can only effectively solve URS instances, and the most advanced complete 

solvers can only effectively solve HRS instances). In further work, we would like to study the flexibility 

of the proposed EFV heuristic and apply the EFV heuristic to other SLS algorithms and carry out deeper 

work along this direction. We would also like to combine the EPEFV algorithm and other solvers to 

achieve better performance on solving HRS instances. A significant research issue is to improve SLS 

algorithms for structured instances and constrained satisfaction as well as graph search problems by the 

proposed new heuristics. 
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Appendix 

This appendix section provides all the tables involved in the experimental section in the paper. 

Table 1 

Computational results on the HRS instances with r=4.3. 

Benchmark 
Instance 

Class 

Score2SAT 

suc 

par2 

YalSAT 

suc 

par2 

Dimetheus 

suc 

par2 

ProbSAT 

suc 

par2 

gluHack 

suc 

par2 

STR 

suc 

par2 

MBT 

suc 

par2 

Cadical 

suc 

par2 

EPEFV 

suc 

par2 

4.3HRS 

Comp17 

n=400 
50 

0.003 

50 

0.08 

50 

0.021 

50 

0.002 

50 

261.2 

50 

0.090 

50 

102.6 

50 

274.6 

50 

0.004 

n=420 
50 

0.012 

50 

0.014 

50 

0.033 

50 

0.002 

50 

481.1 

50 

0.080 

50 

390.6 

50 

481.7 

50 

0.010 

n=440 
50 

0.020 

50 

0.072 

50 

0.326 

50 

0.448 

30 

4778 

50 

0.351 

40 

2464 

40 

2616 

50 

0.130 

n=460 
50 

0.012 

50 

0.020 

50 

0.017 

50 

0.006 

50 

1572 

50 

0.078 

30 

4241 

50 

278.7 

50 

0.012 

n=480 
50 

0.006 

50 

0.204 

50 

0.017 

50 

0.012 

40 

2481 

50 

0.079 

30 

4780 

50 

181.3 

50 

0.012 

n=500 
50 

0.003 

50 

0.002 

50 

0.016 

50 

0.009 

20 

6481 

50 

0.068 

30 

4314 

50 

575.8 

50 

0.002 

n=520 
50 

0.010 

50 

0.010 

50 

0.014 

50 

0.009 

30 

4939 

50 

0.088 

30 

4765 

40 

2360 

50 

0.002 

n=540 
50 

0.014 

50 

0.006 

50 

0.013 

50 

0.006 

20 

6908 

50 

0.101 

10 

8034 

20 

6225 

50 

0.010 

Overall 
400 

0.020 

400 

0.017 

400 

0.057 

400 

0.062 

290 

3481 

400 

0.117 

270 

3641 

350 

1625 

400 

0.023 

4.3HRS 

Testing 

n=600 
200 

0.007 

200 

0.004 

200 

0.009 

200 

0.007 

40 

976.5 

200 

0.051 

0 

- 

80 

794.0 

200 

0.014 

n=700 
200 

0.019 

200 

0.023 

200 

0.033 

200 

0.010 

0 

- 

200 

0.165 

0 

- 

0 

- 

200 

0.028 

n=800 
200 

0.052 

200 

0.019 

200 

0.055 

200 

0.030 

0 

- 

200 

0.373 

0 

- 

0 

- 

200 

0.771 

n=900 
200 

0.044 

200 

0.028 

200 

0.022 

200 

0.072 

0 

- 

200 

1.120 

0 

- 

0 

- 

200 

0.281 

n=1000 
200 

0.016 

200 

0.010 

200 

0.022 

200 

0.002 

0 

- 

200 

0.172 

0 

- 

0 

- 

200 

0.022 

Overall 
1000 

0.028 

1000 

0.017 

1000 

0.028 

1000 

0.024 

40 

1347 

1000 

0.376 

0 

- 

80 

1119 

1000 

0.223 

 

Experiments on the HRS instances with r=4.3 

Table 1 in the Appendix presents the comparative results of EPEFV with its SLS competitors 

Score2SAT, YalSAT, Dimetheus as well as ProbSAT and complete competitors gluHack, STR, MBT 

and Cadical on 4.3HRS Comp17 benchmark and 4.3HRS testing benchmark. According to Table 1 in 
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the Appendix, EPEFV outperforms all complete competitors gluHack, MBT and Cadical in terms of 

metrics. Although EPEFV is slower than Score2SAT, Dimetheus, YalSAT and ProbSAT in terms of 

par 2, EPEFV, Score2SAT, YalSAT, Dimetheus and ProbSAT show the same performance in terms of 

successful runs. Overall, EPEFV outperforms STR in terms of par 2. 

Table 2 

Computational results on the HRS instances with r=5.206. 

Benchmark 
Instance 

Class 

Score2SAT 

suc 

par2 

YalSAT 

suc 

par2 

Dimetheus 

suc 

par2 

ProbSAT 

suc 

par2 

gluHack 

suc 

par2 

STR 

suc 

par2 

MBT 

suc 

par2 

Cadical 

suc 

par2 

EPEFV 

suc 

par2 

5.206HRS 

Comp17 

n=400 
0 

- 

0 

- 

0 

- 

0 

- 

50 

45.87 

50 

2.052 

50 

4.698 

50 

15.96 

50 

0.034 

n=420 
0 

- 

0 

- 

0 

- 

0 

- 

50 

19.72 

50 

0.976 

50 

16.27 

50 

114.0 

50 

0.032 

n=440 
20 

6000 

0 

- 

0 

- 

0 

- 

50 

44.83 

50 

0.659 

50 

35.70 

50 

147.4 

50 

0.034 

n=460 
0 

- 

0 

- 

0 

- 

0 

- 

50 

259.2 

50 

0.964 

50 

32.61 

50 

128.2 

50 

0.042 

n=480 
10 

8000 

0 

- 

0 

- 

0 

- 

50 

526.1 

50 

13.75 

50 

23.55 

50 

703.9 

50 

0.038 

n=500 
0 

- 

0 

- 

0 

- 

0 

- 

50 

278.2 

50 

1.505 

50 

44.37 

50 

915.0 

50 

0.038 

n=520 
0 

- 

0 

- 

0 

- 

0 

- 

40 

2656 

50 

17.17 

50 

38.44 

50 

1587 

50 

0.050 

n=540 
0 

- 

0 

- 

0 

- 

0 

- 

40 

3074 

50 

8.603 

50 

345.5 

30 

5819 

50 

0.044 

Overall 
30 

9250 

0 

- 

0 

- 

0 

- 

380 

863.2 

400 

5.709 

400 

67.64 

380 

1179 

400 

0.039 

5.206HRS 

Testing 

n=600 
0 

- 

0 

- 

0 

- 

0 

- 

80 

815.2 

200 

11.25 

120 

537.8 

80 

1870 

200 

0.048 

n=700 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

200 

11.81 

33 

1035 

40 

1515 

200 

0.058 

n=800 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

160 

273.0 

40 

1075 

0 

- 

200 

0.089 

n=900 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

120 

505.2 

0 

- 

0 

- 

200 

0.091 

n=1000 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

120 

504.5 

0 

- 

0 

- 

200 

0.110 

Overall 
0 

- 

0 

- 

0 

- 

0 

- 

80 

323.2 

800 

261.2 

193 

1010 

120 

1642 

1000 

0.079 

Experiments on the HRS instances with r≈5.206 

Table 2 in the Appendix presents the experimental results of EPEFV and its competitors on the 

5.206HRS Comp17 benchmark and 5.206HRS Testing benchmark. EPEFV stands out as the best solver 

in terms of successful runs and par 2 on these benchmarks. Overall, EPEFV solves each instance within 

one second. It is even more promising that EPEFV is over 146 times faster than STR in overall 

5.206HRS Comp17 benchmarks. It is promising to see the performance of EPEFV remains surprisingly 

good on 5.206HRS testing benchmark, where its competitors show rather poor performance, especially 

for SLS solvers. For 5.206HRS testing benchmark, on all 1000 instances, EPEFV found the solution for 

1000 of them, while the results for Score2SAT, YalSAT, Dimetheus, ProbSAT, gluHack, Cadical, MBT 

and STR are only 0, 0, 0, 0, 80, 120, 193 and 800 respectively. Furthermore, EPEFV succeeded in 200 

runs for the HRS instances with n=900 and n=1000, although the competitor STR solves 120 runs on 

these two classes of instances, whereas all other competitors failed to find a solution for any of these 

instances. 
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STR won the random track of SAT Competition 2018 and gluHack also exhibits good performance 

on this benchmark, so it is challenging to improve such performance over STR and gluHack on the HRS 

instances with r=5.206. Indeed, to the best of our knowledge, all 5.206HRS testing instances are solved 

for the first time. Given the good performance of EPEFV on the 5.206HRS Testing benchmark with 

1000 variables, it is very likely to be able to solve larger HRS instances with r=5.206. The experimental 

results show that EPEFV algorithm achieves the advanced performance on HRS instances with r=5.206. 

 
Table 3 

Computational results on the HRS instances with r=5.5. 

Benchmark 
Instance 

Class 

Score2SAT 

suc 

par2 

YalSAT 

suc 

par2 

Dimetheus 

suc 

par2 

ProbSAT 

suc 

par2 

gluHack 

suc 

par2 

STR 

suc 

par2 

MBT 

suc 

par2 

Cadical 

suc 

par2 

EPEFV 

suc 

par2 

5.5HRS 

Comp17 

n=400 
10 

800 

10 

800 

10 

800 

10 

800 

50 

8.608 

50 

154.3 

50 

2.153 

50 

4.938 

50 

0.468 

n=420 
20 

6000 

20 

6000 

20 

6000 

20 

6000 

50 

3.801 

50 

102.6 

50 

2.217 

50 

3.424 

50 

0.548 

n=440 
0 

- 

0 

- 

0 

- 

0 

- 

50 

6.723 

50 

194.1 

50 

5.583 

50 

4.090 

50 

0.628 

n=460 
10 

8000 

10 

8000 

10 

8000 

10 

8000 

50 

33.22 

50 

157.4 

50 

3.616 

50 

23.80 

50 

0.746 

n=480 
10 

8000 

10 

8000 

10 

8000 

10 

8000 

50 

29.7 

50 

149.0 

50 

3.599 

50 

8.626 

50 

0.570 

n=500 
10 

8000 

20 

6000 

20 

6000 

20 

6000 

50 

45.72 

50 

122.4 

50 

3.370 

50 

17.05 

50 

0.460 

n=520 
20 

6000 

10 

8000 

10 

8000 

10 

8000 

50 

33.91 

50 

158.5 

50 

5.128 

50 

19.82 

50 

0.850 

n=540 
10 

8000 

10 

8000 

10 

8000 

10 

8000 

50 

37.54 

50 

169.8 

50 

4.610 

50 

40.08 

50 

1.022 

Overall 
90 

7750 

90 

7750 

90 

7750 

90 

7750 

400 

24.90 

400 

151.0 

400 

3.785 

400 

15.23 

400 

0.662 

5.5HRS 

Testing 

n=600 
40 

960.0 

40 

960.0 

40 

960.0 

40 

960.0 

160 

296.0 

200 

5.812 

400 

4.002 

200 

136.0 

200 

0.781 

n=700 
40 

960.0 

40 

960.0 

40 

960.0 

40 

960.0 

120 

581.4 

140 

363.6 

200 

62.33 

200 

157.3 

200 

0.950 

n=800 
40 

960.0 

40 

960.0 

40 

960.0 

40 

960.0 

0 

- 

40 

960.4 

160 

254.7 

40 

1065 

200 

1.396 

n=900 
40 

960.0 

40 

960.0 

40 

960.0 

40 

960.0 

40 

1050 

80 

722.2 

160 

350.0 

0 

- 

200 

1.594 

n=1000 
0 

- 

0 

- 

0 

- 

0 

- 

40 

1072 

0 

- 

200 

119.3 

0 

- 

200 

1.767 

Overall 
160 

1008 

160 

1008 

160 

1008 

160 

1008 

360 

839.8 

460 

650.3 

920 

158.1 

440 

751.6 

1000 

1.298 

Experiments on the HRS instances with r=5.5 

Table 3 in the Appendix summarizes the experimental results on the 5.5HRS Comp17 benchmark 

and 5.5HRS Testing benchmark. It is clear that EPEFV shows significantly better performance than all 

its competitors on the whole benchmark. EPEFV is the only solver that solves all 5.5HRS Comp17 

benchmark and 5.5HRS random benchmark in all runs. Also, EPEFV outperforms its competitors in 

terms of par 2, which is more obvious as the instance size increases. In particular, on the instances with 

n=1000, which are of the large size on 5.5HRS Testing benchmark, the runtime of EPEFV is 2 orders 

of magnitudes less than that of complete solvers, and 3 orders of magnitudes less than that of SLS 

solvers, which illustrates its robustness. The experimental results show that EPEFV achieves the 

advanced performance on HRS instances with r=5.5. 
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Table 4 

Computational results on the SAT Comp18 benchmark. 

Instance 

Ratio 

Score2SAT 

suc 
par2 

YalSAT 

suc 
par2 

Dimetheus 

suc 
par2 

ProbSAT 

suc 
par2 

gluHack 

suc 
par2 

STR 

suc 
par2 

MBT 

suc 
par2 

Cadical 

suc 
par2 

EPEFV 

suc 
par2 

r=4.3 
55 

0.001 

55 

0.001 

55 

0.007 

55 

0.013 

55 

10.98 

55 

0.052 

55 

8.636 

55 

53.76 

55 

0.007 

r=5.206 
33 

4000 
27 

5228 
12 

7858 
12 

7985 
55 

3.425 
55 

1.020 
55 

3.281 
55 

7.436 
55 

0.019 

r=5.5 
12 

7818 

12 

7818 

12 

7818 

12 

7818 

55 

2.035 

55 

136.4 

55 

1.744 

55 

1.067 

55 

0.356 

Overall 
100 

3939 

94 

4349 

79 

5526 

79 

5259 

165 

5.476 

165 

45.82 

165 

4.544 

165 

21.13 

165 

0.128 

Experiments on the SAT Comp18 benchmark 

To investigate the performance of EPEFV on random HRS benchmarks with various ratio, we 

compare it with its SLS and complete competitors on all HRS instances with r=4.3, r=5.206 and r=5.5 

from SAT Competition 2018. Table 4 in the Appendix reports the number of solved instances and par 

2 for each solver on each HRS benchmark. Since ProbSAT is the basic framework of EPEFV, we first 

compare these two solvers. As shown in Table 4 in the Appendix, ProbSAT solves 79 HRS instances, 

while EPEFV solves 165 HRS instances, which is 2 times as that solved by ProbSAT in overall HRS 

instances. 

EPEFV solved more instances than all SLS competitors. Overall, EPEFV solved 165 HRS instances, 

compared to 79 for Dimetheus, and 94 for YalSAT, and 100 for Score2SAT. Further observation shows 

that, although EPEFV solves the same number of? instances as the ones solved by all complete 

competitors and SparrowToRiss, EPEFV is about 36 times faster than MBT (MBT performs the least 

time among those competitors). In particular, EPEFV has similar performance with Score2SAT, 

YalSAT and Dimetheus on HRS instances with r=4.3, and significantly outperforms gluHack, STR, 

MBT and Cadical on HRS instances with r=4.3, r=5.206 and r=5.5.   

Table 5 

Computational results on the 5.699HRS Testing benchmark. 

Instance 

Class 

Score2SAT 
suc 

par2 

YalSAT 
suc 

par2 

Dimetheus 
suc 

par2 

ProbSAT 
suc 

par2 

gluHack 
suc 

par2 

STR 
suc 

par2 

MBT 
suc 

par2 

Cadical 
suc 

par2 

EPEFV 
suc 

par2 

n=200 
0 

- 

0 

- 

0 

- 

0 

- 

100 

0.027 

100 

42.01 

100 

1.217 

100 

0.109 

100 

0.202 

n=300 
0 

- 

0 

- 

0 

- 

0 

- 

100 

0.437 

100 

94.28 

100 

1.688 

100 

1.098 

100 

0.282 

n=400 
0 

- 

0 

- 

0 

- 

0 

- 

100 

2.372 

100 

213.5 

100 

1.994 

100 

3.497 

100 

0.471 

n=500 
0 
- 

0 
- 

0 
- 

0 
- 

100 
34.44 

100 
228.2 

100 
2.862 

100 
8.975 

100 
0.607 

n=600 
0 

- 

0 

- 

0 

- 

0 

- 

60 

509.5 

80 

444.1 

100 

8.714 

100 

104.8 

100 

0.783 

n=700 
0 

- 

0 

- 

0 

- 

0 

- 

100 

190.4 

40 

855.9 

100 

153.6 

59 

542.3 

100 

0.910 

n=800 
0 
- 

0 
- 

0 
- 

0 
- 

40 
804.8 

0 
- 

100 
104.97 

0 
- 

100 
1.025 

n=900 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

80 

367.7 

0 

- 

100 

1.246 

n=1000 
0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

0 

- 

20 

974.2 

0 

- 

100 

1.388 

Overall 
0 
- 

0 
- 

0 
- 

0 
- 

600 
438.1 

520 
608.7 

800 
179.7 

559 
473.4 

900 

0.768 
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Experiments on the 5.699HRS testing benchmark 

Table 5 in the Appendix reports the experimental results for each solver on 5.699HRS testing 

benchmark. For the instances with n=200, EPEFV is slower than gluHack, but EPEFV and gluHack 

solved the same number of instances. For the instances with n=300, n=400, n=500, n=600 and n=700, 

EPEFV and MBT solved the same number of instances, but EPEFV has less accumulative run time. 

For the instances with n=900 and n=1000, EPEFV solved the most instances. Especially, EPEFV shows 

significantly superior performance than its competitors on the instances with n=1000, where it solved 

100 instances, while MBT solved 20 instances and other competitors failed to find a solution for any of 

these instances. Overall, EPEFV solved 900 instances, compared to 0, 0, 0, 0, 600, 520, 559 and 800 

instances for Score2SAT, YalSAT, Dimetheus, ProbSAT, gluHack, STR, Cadical and MBT 

respectively. 

Table 6 

Computational results on the SAT Competition 2017 benchmark. 

Instance types Variable sizes and ratios 
Dimetheus ProbSAT YalSAT Score2SAT EPEFV 

suc par2 suc par2 suc par2 suc par2 suc par2 

5-SAT 
n<600, r=21.117 121 7032 132 6829 130 6880 140 6655 170 6074 

n=250000, r<21.117 130 3755 110 4526 120 4147 80 6231 130 3667 

7-SAT 
n<200, r=87.79 181 5552 181 5791 170 5957 193 5582 201 5499 

n=50000, r<87.79 160 2117 110 4514 90 5517 110 5756 120 4015 

Overall 592 5173 533 5713 510 5890 534 6077 621 5138 

 

Experiments on the SAT Competition 2017 benchmark 

Table 6 in the Appendix presents the results of the performance of EPEFV compared with the 

current SLS solvers on all URS instances with long clauses from SAT Competition 2017. The results 

show that for huge 7-SAT instances with n=50000 and r<87.79, the performance of EPEFV and 

Dimetheus are similar and better than that of other competitors, and for the remaining instances class, 

EPEFV significantly outperforms its competitors in terms of successful runs and par 2.  

Especially, EPEFV succeeds in a few more runs than ProbSAT and Score2SAT on random 5-SAT  

instances at phase transition. EPEFV succeeds in 170 runs, compared to 132 for ProbSAT and 140 for 

Score2SAT. Further observation shows that EPEFV succeeds in 201 runs, compared to 181 for 

Dimetheus and ProbSAT and 193 for Score2SAT on random 7-SAT instances at phase transition. 

Overall, EPEFV succeeds in 621 runs, whereas none of its competitors succeeds in more than 600 runs 

with the cutoff time, which illustrates its robustness.  

Table 7 

Computational results on the 5-SAT medium benchmark. 

Instances class 
     Dimetheus       ProbSAT YalSAT      Score2SAT         EPEFV 

suc suc suc par2 suc par2 suc par2 suc par2 

5-SAT-200 11 4506 11 4505 11 4513 11 4502 11 4500 

5-SAT-250 10 5009 10 5158 10 5247 9 5517 9 5518 

5-SAT-300 10 5171 8 6116 10 5283 9 6060 10 5381 

Overall 31 4895 29 5260 31 5014 29 5360 30 5133 

Experiments on the 5-SAT medium benchmark 

Table 7 in the Appendix reports the experimental results for each solver on 5-SAT medium 

benchmark. For medium 5-SAT instances with n=200, EPEFV gives the best performance. Overall, 

EPEFV significantly outperforms ProbSAT and Score2SAT on this benchmark, and has similar 
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performance as the best solver Dimetheus, solving only one less instance. 

Table 8 

Computational results on the 7-SAT medium benchmark. 

Instances class 
      Dimetheus        ProbSAT YalSAT       Score2SAT       EPEFV 

suc suc suc suc suc suc suc par2 suc par2 

7-SAT-100 12 4057 12 4044 12 4044 12 4043 11 4503 

7-SAT-110 11 4562 11 4559 11 4749 11 4580 9 5518 

7-SAT-120 10 5432 9 5969 10 5451 10 5242 10 5381 
Overall 33 4690 32 4857 33 4857 33 4622 30 5134 

Experiments on the 7-SAT medium benchmark 

Table 8 in the Appendix presents the results of the performance of EPEFV compared with the 

current SLS solvers on the 7-SAT medium benchmark. As can be seen from Table 8, EPEFV has similar 

performance with all SLS competitors on this benchmark. 

Table 9 

Computational results on the SAT Competition 2016 benchmark. 

Instances  
class 

       Dimetheus      ProbSAT   YalSAT      Score2SAT      EPEFV 

suc par2 suc par2 suc par2 suc par2 suc par2 

5-SAT 

r=21.115 
131 6891 141 6716 130 6913 132 6797 150 6445 

7-SAT 

r=87.79 
180 5876 180 5762 152 6401 179 6298 180 5759 

Overall 311 6383 321 6239 282 6657 311 4808 330 6102 

Experiments on the SAT Competition 2016 medium benchmark 

Table 9 in the Appendix presents the experimental results of EPEFV and its competitors on URS 

instances at phase transition from SAT Competition 2016. Since EPEFV is based on ProbSAT, we first 

compare these two solvers. As can be seen form Table 9, EPEFV succeeds in more runs than ProbSAT 

on all instances calssess. Overall, ProbSAT succeeds in 321 runs, while EPEFV succeeds in 330 runs. 

EPEFV succeeds in a few more runs than its competitors. Overall, EPEFV succeeds in 330 runs, 

compared to 311 for both Dimetheus and Score2SAT and 282 for YalSAT. 

 

Table 10 

Computational results on the huge k-SAT instances with k=5, 7. 

k-SAT Instances class 
Dimetheus ProbSAT YalSAT Score2SAT EPEFV 

suc par2 suc par2 suc par2 suc par2 suc par2 

5-SAT 

5-SAT- r=18.0 

n=250000 
50 673.2 48 819.0 50 344.7 50 3780 50 904.2 

5-SAT- r=18.2 
n=250000 

50 464.6 0 - 46 1635 0 - 50 1632 

5-SAT- r=18.4 

n=250000 
50 741.8 0 - 0 - 0 - 50 2120 

overall 150 626.5 48 7073 96 4260 50 7927 150 1552 

7-SAT 

7-SAT- r=64.0 

n=50000 
50 114.7 50 37.68 21 6363 50 1890 50 103.7 

7-SAT- r=65.0 
n=50000 

50 392.3 47 797.4 0 - 41 5220 50 235.5 

7-SAT- r=66.0 

n=50000 
50 449.8 0 - 0 - 0 - 50 1080 

Overall 150 318.9 97 3812 21 10721 91 6303 150 473.1 
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Experiments on the k-SAT huge instances with k=5, 7 

The huge sized instances with a few million clauses and the ratio from far from the phase-transition 

ratio to relatively close, are as large as some of the application benchmarks. We compare EPEFV with 

SLS solvers on huge 5-SAT and 7-SAT instances. 

As can be seen form Table 10 in the Appendix, EPEFV is based on ProbSAT, while EPEFV solves 

more instances than ProbSAT. Overall, ProbSAT solves 48 (out of 150) and 97 (out of 150) instances 

for huge 5-SAT and 7-SAT instacnes respectively, while EPEFV solves all huge instances, which is 3 

times as that solved by ProbSAT on huge 5-SAT instacnes. Dimetheus and EPEFV solve more instances 

than YalSAT and Score2SAT. EPEFV has similar performance with Dimetheus on this benchmark, 

solving all instances. 

 

 


