160 research outputs found

    An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella

    Get PDF
    A comprehensive phylogenetic reassessment of the ascomycete genus Cosmospora (Hypocreales, Nectriaceae) is undertaken using fresh isolates and historical strains, sequences of two protein encoding genes, the second largest subunit of RNA polymerase II (rpb2), and a new phylogenetic marker, the larger subunit of ATP citrate lyase (acl1). The result is an extensive revision of taxonomic concepts, typification, and nomenclatural details of many anamorph- and teleomorph-typified genera of the Nectriaceae, most notably Cosmospora and Fusarium. The combined phylogenetic analysis shows that the present concept of Fusarium is not monophyletic and that the genus divides into two large groups, one basal in the family, the other terminal, separated by a large group of species classified in genera such as Calonectria, Neonectria, and Volutella. All accepted genera received high statistical support in the phylogenetic analyses. Preliminary polythetic morphological descriptions are presented for each genus, providing details of perithecia, micro- and/or macro-conidial synanamorphs, cultural characters, and ecological traits. Eight species are included in our restricted concept of Cosmospora, two of which have previously documented teleomorphs and all of which have Acremonium-like microconidial anamorphs. A key is provided to the three anamorphic species recognised in Atractium, which is removed from synonymy with Fusarium and epitypified for two macroconidial synnematous species and one sporodochial species associated with waterlogged wood. Dialonectria is recognised as distinct from Cosmospora and two species with teleomorph, macroconidia and microconidia are accepted, including the new species D. ullevolea. Seven species, one with a known teleomorph, are classified in Fusicolla, formerly considered a synonym of Fusarium including members of the F. aquaeductuum and F. merismoides species complex, with several former varieties raised to species rank. Originally a section of Nectria, Macroconia is raised to generic rank for five species, all producing a teleomorph and macroconidial anamorph. A new species of the Verticillium-like anamorphic genus Mariannaea is described as M. samuelsii. Microcera is recognised as distinct from Fusarium and a key is included for four macroconidial species, that are usually parasites of scale insects, two of them with teleomorphs. The four accepted species of Stylonectria each produce a teleomorph and micro- and macroconidial synanamorphs. The Volutella species sampled fall into three clades. Pseudonectria is accepted for a perithecial and sporodochial species that occurs on Buxus. Volutella s. str. also includes perithecial and/or sporodochial species and is revised to include a synnematous species formerly included in Stilbella. The third Volutella-like clade remains unnamed. All fungi in this paper are named using a single name system that gives priority to the oldest generic names and species epithets, irrespective of whether they are originally based on anamorph or teleomorph structures. The rationale behind this is discussed

    A systematic account of the genus Plagiostoma (Gnomoniaceae, Diaporthales) based on morphology, host-associations, and a four-gene phylogeny

    Get PDF
    Members of the genus Plagiostoma inhabit leaves, stems, twigs, and branches of woody and herbaceous plants predominantly in the temperate Northern Hemisphere. An account of all known species of Plagiostoma including Cryptodiaporthe is presented based on analyses of morphological, cultural, and DNA sequence data. Multigene phylogenetic analyses of DNA sequences from four genes (β-tubulin, ITS, rpb2, and tef1-α) revealed eight previously undescribed phylogenetic species and an association between a clade composed of 11 species of Plagiostoma and the host family Salicaceae. In this paper these eight new species of Plagiostoma are described, four species are redescribed, and four new combinations are proposed. A key to the 25 accepted species of Plagiostoma based on host, shape, and size of perithecia, perithecial arrangement in the host, and microscopic characteristics of the asci and ascospores is provided. Disposition of additional names in Cryptodiaporthe and Plagiostoma is also discussed

    Molecular phylogenetics of Pleosporales: Melanommataceae and Lophiostomataceae re-circumscribed (Pleosporomycetidae, Dothideomycetes, Ascomycota)

    Get PDF
    The classification of Pleosporales has posed major challenges due to the lack of clear understanding of the importance of the morphological characters used to distinguish between different groups in the order. This has resulted in varied taxonomic treatments of many families in the group including Melanommataceae and Lophiostomataceae. In this study we employ two nuclear DNA gene markers, nuclear ribosomal large subunit DNA and translation elongation factor 1-alpha in order to examine the molecular phylogenetics of Pleosporales with strong emphasis on the families Melanommataceae and Lophiostomataceae. Phylogenetic analyses recovered Melanommataceae, Lophiostomataceae, Hypsostromataceae, and a few others as strongly supported clades within the Pleosporales. Melanommataceae as currently circumscribed was found to be polyphyletic. The genera Byssosphaeria, Melanomma, and Pseudotrichia were recovered within the family, while others such as Ostropella and Xenolophium nested outside in a weakly supported group along with Platystomum compressum and Pseudotrichia guatopoensis that may correspond to the family Platystomaceae. The genus Byssosphaeria was recovered as a strongly supported group within the Melanommataceae while Melanomma was weakly supported with unclear relationships among the species. The genera Herpotrichia and Bertiella were also found to belong in the Melanommataceae. Lophiostomataceae occurs as a strongly supported group but its concept is here expanded to include a new genus Misturatosphaeria that bears morphology traditionally not known to occur in the family. The strongly supported clade of Misturatosphaeria contains nine species that have gregarious, papillate ascomata with lighter coloured apices and plugged ostioles and that vary in ascospore morphology from 1- to 3-septate to muriform. Along with a strongly supported Lophiostoma clade, also within the family are Thyridaria macrostomoides based on new sequences from Kenyan collections and Massariosphaeria triseptata, M. grandispora, Westerdykella cylindrica and Preussia terricola based on GenBank sequences. The family Hypsostromataceae was recovered as a strongly supported monophyletic group nested within the Pleosporales

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae

    Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales

    Get PDF
    The Gnomoniaceae are characterised by ascomata that are generally immersed, solitary, without a stroma, or aggregated with a rudimentary stroma, in herbaceous plant material especially in leaves, twigs or stems, but also in bark or wood. The ascomata are black, soft-textured, thin-walled, and pseudoparenchymatous with one or more central or eccentric necks. The asci usually have a distinct apical ring. The Gnomoniaceae includes species having ascospores that are small, mostly less than 25 μm long, although some are longer, and range in septation from non-septate to one-septate, rarely multi-septate. Molecular studies of the Gnomoniaceae suggest that the traditional classification of genera based on characteristics of the ascomata such as position of the neck and ascospores such as septation have resulted in genera that are not monophyletic. In this paper the concepts of the leaf-inhabiting genera in the Gnomoniaceae are reevaluated using multiple genes, specifically nrLSU, translation elongation factor 1-alpha (tef1-α), and RNA polymerase II second largest subunit (rpb2) for 64 isolates. ITS sequences were generated for 322 isolates. Six genera of leaf-inhabiting Gnomoniaceae are defined based on placement of their type species within the multigene phylogeny. The new monotypic genus Ambarignomonia is established for an unusual species, A. petiolorum. A key to 59 species of leaf-inhabiting Gnomoniaceae is presented and 22 species of Gnomoniaceae are described and illustrated

    Phacidium and Ceuthospora (Phacidiaceae) are congeneric: taxonomic and nomenclatural implications

    Get PDF
    The morphologically diverse genus Ceuthospora has traditionally been linked to Phacidium sexual morphs via association, though molecular or cultural data to confirm this relationship have been lacking. The aim of this study was thus to resolve the relationship of these two genera by generating nucleotide sequence data for three loci, ITS, LSU and RPB2. Based on these results, Ceuthospora is reduced to synonymy under the older generic name Phacidium. Phacidiaceae (currently Helotiales) is suggested to constitute a separate order, Phacidiales (Leotiomycetes), as sister to Helotiales, which is clearly paraphyletic. Phacidiaceae includes Bulgaria, and consequently the family Bulgariaceae becomes a synonym of Phacidiaceae. Several new combinations are introduced in Phacidium, along with two new species, P. pseudophacidioides, which occurs on Ilex and Chamaespartium in Europe, and Phacidium trichophori, which occurs on Trichophorum cespitosum subsp. germanicum in The Netherlands. The generic name Allantophomopsiella is introduced to accommodate A. pseudotsugae, a pathogen of conifers, while Gremmenia is resurrected to accommodate the snow-blight pathogens of conifers, G. abietis, G. infestans, and G. pini-cembrae

    The Botryosphaeriaceae: genera and species known from culture

    Get PDF
    In this paper we give an account of the genera and species in the Botryosphaeriaceae. We consider morphological characters alone as inadequate to define genera or identify species, given the confusion it has repeatedly introduced in the past, their variation during development, and inevitable overlap as representation grows. Thus it seems likely that all of the older taxa linked to the Botryosphaeriaceae, and for which cultures or DNA sequence data are not available, cannot be linked to the species in this family that are known from culture. Such older taxa will have to be disregarded for future use unless they are epitypified. We therefore focus this paper on the 17 genera that can now be recognised phylogenetically, which concentrates on the species that are presently known from culture. Included is a historical overview of the family, the morphological features that define the genera and species and detailed descriptions of the 17 genera and 110 species. Keys to the genera and species are also provided. Phylogenetic relationships of the genera are given in a multi-locus tree based on combined SSU, ITS, LSU, EF1-α and β-tubulin sequences. The morphological descriptions are supplemented by phylogenetic trees (ITS alone or ITS + EF1-α) for the species in each genus.We would like to thank the curators of the numerous fungaria and Biological Resource Centres cited in this paper, for making specimens and cultures available for examination over the past 15 yr, without which this study would not have been possible. Part of this work was supported by Fundação para a Ciência e a Tecnologia (Portugal) through grant PEst-OE/BIA/UI0457/2011. Artur Alves and Alan Phillips were supported by the programme Ciência 2008, co-funded by the Human Potential Operational Programme (National Strategic Reference Framework 2007–2013) and the European Social Fund (EU).publishe

    Lakeside View: Sociocultural Responses to Changing Water Levels of Lake Turkana, Kenya

    Get PDF
    Throughout the Holocene, Lake Turkana has been subject to drastic changes in lake levels and the subsistence strategies people employ to survive in this hot and arid region. In this paper, we reconstruct the position of the lake during the Holocene within a paleoclimatic context. Atmospheric forcing mechanisms are discussed in order to contextualize the broader landscape changes occurring in eastern Africa over the last 12,000 years. The Holocene is divided into five primary phases according to changes in the strand-plain evolution, paleoclimate, and human subsistence strategies practiced within the basin. Early Holocene fishing settlements occurred adjacent to high and relatively stable lake levels. A period of high-magnitude oscillations in lake levels ensued after 9,000 years BP and human settlements appear to have been located close to the margins of the lake. Aridification and a final regression in lake levels ensued after 5,000 years BP and human communities were generalized pastoralists-fishers-foragers. During the Late Holocene, lake levels may have dropped below their present position and subsistence strategies appear to have been flexible and occasionally specialized on animal pastoralism. Modern missionary and government outposts have encouraged the construction of permanent settlements in the region, which are heavily dependent on outside resources for their survival. Changes in the physical and cultural environments of the Lake Turkana region have been closely correlated, and understanding the relationship between the two variables remains a vital component of archaeological research
    corecore