400 research outputs found
Coverage-dependent adsorption sites in the K/Ru(0001) system: a low-energy electron-diffraction analysis
The two ordered phases p(2 × 2) at a coverage θ = 0.25 and (√3 × √3)R30° at θ = 0.33 of potassium adsorbed on Ru(0001) were analyzed by use of low-energy electron-diffraction (LEED). In the (√3 × √3)R30° phase, the K atoms occupy threefold hcp sites, while in the p(2 × 2) phase the fcc site is favoured. In both phases, the K hard-sphere radii are nearly the same and close to the covalent Pauling radius
The structure ofAl(111)-K−(√3 × √3)R30° determined by LEED: stable and metastable adsorption sites
It is found that the adsorption of potassium on Al(111) at 90 K and at 300 K both result in a (√3 × √3)R0° structure. Through a detailed LEED analysis it is revealed that at 300 K the adatoms occupy substitutional sites and at 90 K the adatoms occupy on-top sites; both geometries have hitherto been considered as very unusual. The relationship between bond length and coordination is discussed with respect to the present results, and with respect to other quantitative studies of alkali-metal/metal adsorption systems
Computing the shortest elementary flux modes in genome-scale metabolic networks
This article is available open access through the publisher’s website through the link below. Copyright @ The Author 2009.Motivation: Elementary flux modes (EFMs) represent a key concept to analyze metabolic networks from a pathway-oriented perspective. In spite of considerable work in this field, the computation of the full set of elementary flux modes in large-scale metabolic networks still constitutes a challenging issue due to its underlying combinatorial complexity.
Results: In this article, we illustrate that the full set of EFMs can be enumerated in increasing order of number of reactions via integer linear programming. In this light, we present a novel procedure to efficiently determine the K-shortest EFMs in large-scale metabolic networks. Our method was applied to find the K-shortest EFMs that produce lysine in the genome-scale metabolic networks of Escherichia coli and Corynebacterium glutamicum. A detailed analysis of the biological significance of the K-shortest EFMs was conducted, finding that glucose catabolism, ammonium assimilation, lysine anabolism and cofactor balancing were correctly predicted. The work presented here represents an important step forward in the analysis and computation of EFMs for large-scale metabolic networks, where traditional methods fail for networks of even moderate size.
Contact: [email protected]
Supplementary information: Supplementary data are available at Bioinformatics online (http://bioinformatics.oxfordjournals.org/cgi/content/full/btp564/DC1).Fundação Calouste Gulbenkian, Fundação para a Ciência e a Tecnologia (FCT) and Siemens SA
Portugal
Identification of sex hormone-binding globulin in the human hypothalamus
Gonadal steroids are known to influence hypothalamic functions through both genomic and non-genomic pathways. Sex hormone-binding globulin ( SHBG) may act by a non-genomic mechanism independent of classical steroid receptors. Here we describe the immunocytochemical mapping of SHBG-containing neurons and nerve fibers in the human hypothalamus and infundibulum. Mass spectrometry and Western blot analysis were also used to characterize the biochemical characteristics of SHBG in the hypothalamus and cerebrospinal fluid (CSF) of humans. SHBG-immunoreactive neurons were observed in the supraoptic nucleus, the suprachiasmatic nucleus, the bed nucleus of the stria terminalis, paraventricular nucleus, arcuate nucleus, the perifornical region and the medial preoptic area in human brains. There were SHBG-immunoreactive axons in the median eminence and the infundibulum. A partial colocalization with oxytocin could be observed in the posterior pituitary lobe in consecutive semithin sections. We also found strong immunoreactivity for SHBG in epithelial cells of the choroid plexus and in a portion of the ependymal cells lining the third ventricle. Mass spectrometry showed that affinity-purified SHBG from the hypothalamus and choroid plexus is structurally similar to the SHBG identified in the CSF. The multiple localizations of SHBG suggest neurohypophyseal and neuroendocrine functions. The biochemical data suggest that CSF SHBG is of brain rather than blood origin. Copyright (c) 2005 S. Karger AG, Base
Colon-Derived Liver Metastasis, Colorectal Carcinoma, and Hepatocellular Carcinoma Can Be Discriminated by the Ca2+-Binding Proteins S100A6 and S100A11
Background: It is unknown, on the proteomic level, whether the protein patterns of tumors change during metastasis or whether markers are present that allow metastases to be allocated to a specific tumor entity. The latter is of clinical interest if the primary tumor is not known. Methodology/Principal Findings: In this study, tissue from colon-derived liver metastases (n = 17) were classified, lasermicrodissected, and analysed by ProteinChip arrays (SELDI). The resulting spectra were compared with data for primary colorectal (CRC) and hepatocellular carcinomas (HCC) from our former studies. Of 49 signals differentially expressed in primary HCC, primary CRC, and liver metastases, two were identified by immunodepletion as S100A6 and S100A11. Both proteins were precisely localized immunohistochemically in cells. S100A6 and S100A11 can discriminate significantly between the two primary tumor entities, CRC and HCC, whereas S100A6 allows the discrimination of metastases and HCC. Conclusions: Both identified proteins can be used to discriminate different tumor entities. Specific markers or proteomic patterns for the metastases of different primary cancers will allow us to determine the biological characteristics of metastasis in general. It is unknown how the protein patterns of tumors change during metastasis or whether markers are present that allow metastases to be allocated to a specific tumor entity. The latter is of clinical interest if the primary tumo
A Proposal to Perform High Contrast Imaging of Human Palatine Tonsil with Cross Polarized Optical Coherence Tomography
The palatine tonsils provide the first line of immune defense against foreign pathogens inhaled or ingested. However, a disruption in the epithelial layer within the tonsil crypts can lead to recurrent acute tonsillitis (RAT). Current imaging techniques suffer from poor resolution and contrast and do not allow a classification of the severity of RAT. We have developed a cross-polarized optical coherence tomography system. The system can detect a change in the polarization of the light after the light-tissue interaction. We demonstrate improved resolution and contrast in tonsil imaging with the developed method. Intensity, as well as retardance images of the excised tonsil tissue, were acquired. Features such as crypt epithelium, lymphoid follicles, and dense connective tissue were observed with improved contrast. Cross polarized optical coherence tomography can be a valuable tool in the clinic to evaluate palatine tonsils as it would allow visualizing common tonsil features without the need for any external contrast agent
Benchmark datasets for 3D MALDI- and DESI-imaging mass spectrometry
BACKGROUND: Three-dimensional (3D) imaging mass spectrometry (MS) is an analytical chemistry technique for the 3D molecular analysis of a tissue specimen, entire organ, or microbial colonies on an agar plate. 3D-imaging MS has unique advantages over existing 3D imaging techniques, offers novel perspectives for understanding the spatial organization of biological processes, and has growing potential to be introduced into routine use in both biology and medicine. Owing to the sheer quantity of data generated, the visualization, analysis, and interpretation of 3D imaging MS data remain a significant challenge. Bioinformatics research in this field is hampered by the lack of publicly available benchmark datasets needed to evaluate and compare algorithms. FINDINGS: High-quality 3D imaging MS datasets from different biological systems at several labs were acquired, supplied with overview images and scripts demonstrating how to read them, and deposited into MetaboLights, an open repository for metabolomics data. 3D imaging MS data were collected from five samples using two types of 3D imaging MS. 3D matrix-assisted laser desorption/ionization imaging (MALDI) MS data were collected from murine pancreas, murine kidney, human oral squamous cell carcinoma, and interacting microbial colonies cultured in Petri dishes. 3D desorption electrospray ionization (DESI) imaging MS data were collected from a human colorectal adenocarcinoma. CONCLUSIONS: With the aim to stimulate computational research in the field of computational 3D imaging MS, selected high-quality 3D imaging MS datasets are provided that could be used by algorithm developers as benchmark datasets
Clinically abnormal case with paternally derived partial trisomy 8p23.3 to 8p12 including maternal isodisomy of 8p23.3: a case report
<p>Abstract</p> <p>Background</p> <p>Because of low copy repeats (LCRs) and common inversion polymorphisms, the human chromosome 8p is prone to a number of recurrent rearrangements. Each of these rearrangements is associated with several phenotypic features. We report on a patient with various clinical malformations and developmental delay in connection with an inverted duplication event, involving chromosome 8p.</p> <p>Methods</p> <p>Chromosome analysis, multicolor banding analysis (MCB), extensive fluorescence in situ hybridization (FISH) analysis and microsatellite analysis were performed.</p> <p>Results</p> <p>The karyotype was characterized in detail by multicolor banding (MCB), subtelomeric and centromere-near probes as 46,XY,dup(8)(pter->p23.3::p12->p23.3::p23.3->qter). Additionally, microsatellite analysis revealed the paternal origin of the duplication and gave hints for a mitotic recombination involving about 6 MB in 8p23.3.</p> <p>Conclusion</p> <p>A comprehensive analysis of the derivative chromosome 8 suggested a previously unreported mechanism of formation, which included an early mitotic aberration leading to maternal isodisomy, followed by an inverted duplication of the 8p12p23.3 region.</p
Multi-Class Cancer Subtyping in Salivary Gland Carcinomas with MALDI Imaging and Deep Learning
Simple Summary The correct diagnosis of different salivary gland carcinomas is important for a prognosis. This diagnosis is imprecise if it is based only on clinical symptoms and histological methods. Mass spectrometry imaging can provide information about the molecular composition of sample tissues. Using a deep-learning method, we analyzed the mass spectrometry imaging data of 25 patients. Using this workflow we could accurately predict the tumor type in each patient sample. Abstract Salivary gland carcinomas (SGC) are a heterogeneous group of tumors. The prognosis varies strongly according to its type, and even the distinction between benign and malign tumor is challenging. Adenoid cystic carcinoma (AdCy) is one subgroup of SGCs that is prone to late metastasis. This makes accurate tumor subtyping an important task. Matrix-assisted laser desorption/ionization (MALDI) imaging is a label-free technique capable of providing spatially resolved information about the abundance of biomolecules according to their mass-to-charge ratio. We analyzed tissue micro arrays (TMAs) of 25 patients (including six different SGC subtypes and a healthy control group of six patients) with high mass resolution MALDI imaging using a 12-Tesla magnetic resonance mass spectrometer. The high mass resolution allowed us to accurately detect single masses, with strong contributions to each class prediction. To address the added complexity created by the high mass resolution and multiple classes, we propose a deep-learning model. We showed that our deep-learning model provides a per-class classification accuracy of greater than 80% with little preprocessing. Based on this classification, we employed methods of explainable artificial intelligence (AI) to gain further insights into the spectrometric features of AdCys
- …
