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Spatiotemporal compartmentalization of signaling pathways and second messengers 
is pivotal for cell biology and membrane rafts are, therefore, required for several lym-
phocyte functions. On the other hand, T  cells have the specific necessity of tuning 
signaling amplification depending on the context in which the antigen is presented. In 
this review, we discuss of membrane rafts in the context of T cell signaling, focusing on 
CD28-mediated costimulation.
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MeMBRAne RAFTS

In the late 1980 s, accumulating evidence set forth the existence of ordered lipid clusters in the cell 
membrane, named lipid rafts. According to the “lipid raft hypothesis,” forces between cholesterol 
and sphingolipids facilitate the dynamic assemblies of lipid domains in an unsaturated glycer-
ophospholipid environment (1). Experimental evidence accumulated during the following years, 
indicated that in real cell membranes transmembrane, signaling, and cytoskeletal proteins play a 
key role in controlling raft generation and dynamics, and have suggested a new model based on 
protein–lipid interaction (2, 3). In 2006, at the end of a vibrant meeting, a consensus definition for 
membrane rafts was achieved and they were defined as “small (10–200 nm), heterogeneous, highly 
dynamic, sterol- and sphingolipid-enriched domains that compartmentalize cellular processes”  
(2, 4). Nonetheless, the size, density, molecular composition, and morphology of these domains in 
cellular membranes have remained controversial for a very long time.

As a matter of fact, for several years from their initial discovery, scientists were skeptical about 
the physiological existence of lipid platforms at the cell membrane, mainly because it was almost 
impossible at that time to probe their presence in living cells. A critical issue in this sense was the 
methodology employed to define a raft-integrated factor that was foremost based on detergent 
resistance; indeed, a hallmark of a raft component is the recovery in the low-density fraction after 
cold Triton extraction and sucrose density gradient centrifugation. However, this technique can 
produce multiple artifacts due to the type and concentration of the detergents, duration of extrac-
tion, and temperature (5, 6). Importantly, methyl-β-cyclodextrin (MβCD) that extracts cholesterol 
from cell membranes was largely exploited to discriminate whether a protein was a raft component 
and more to evaluate whether a biological process was raft dependent or independent. Even in this 
case, the use of this drug was matter of debate due to the multiple non-specific effects of MβCD in 
addition to cholesterol removal, as lateral protein immobilization, plasma membrane depolariza-
tion, and Ca2+ store depletion (7).

To overcome biochemical hurdles, alternative approaches with high temporal and spatial 
resolution have been optimized. Subczynski and Kusumi advanced and exploited pulse electron 
paramagnetic resonance spin labeling methods and single molecule optical imaging to track the 
dynamic entry and exit of molecules in membrane rafts (8). In addition, over the last decades a 
plethora of advanced imaging techniques have been applied to identify membrane rafts in live cells 
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as single fluorophore tracking (9) and photonic force microscopy 
(10), fluorescence resonance energy transfer (11), fluorescence 
recovery after photobleaching (12), total internal reflection 
fluorescence (13), and stimulated emission depletion microscopy 
(14). For technically oriented readers, distinguished reviews in 
the field have illustrated advantages and limits of the different 
methodologies that have been exploited to identify and study 
lipid membrane microdomains (15).

Beyond conceptual and technical criticisms, it was clear 
that one of the most relevant features of membrane rafts is 
their intrinsic capacity to selectively include or exclude specific 
proteins. The partitioning of a single molecule in such liquid-
ordered domains depends on different factors, as cell type and 
activation state, and more importantly it can be regulated by 
intra- and extracellular signals (8). Given their small size, the 
number of proteins that can localize in a single raft domain is 
limited, probably no more than 10–30 proteins. Controversial 
theories have been proposed on raft composition in terms of 
proteins and lipids and several studies have documented the 
coexistence of different membrane rafts with distinctly different 
proteins and/or lipids within the same cell type (16). Indeed, 
a simplified but still operating view of membrane rafts is that 
they can act as highly dynamic platforms at the plasma mem-
brane, where effector enzymes, cofactors, adaptors, and scaffold 
proteins can trigger and organize multiple signaling cascades. 
In this sense, the existence of plasma membrane microdomains 
not only changes the structural organization of the Singer and 
Nicolson fluid mosaic model but, importantly, it also influ-
ences our knowledge on the mechanisms that connect receptor 
stimulation with the activation of an intracellular signaling 
process. Indeed, raft domains may control signal transduction 
in multiple ways. For example, receptor stimulation can rapidly 
and efficiently activate a signaling cascade thanks to the spatial 
juxtaposition of different interacting molecules within the same 
membrane domain. In addition, as for of tyrosine kinases, 
rafts can offer a protective micro-environment that isolates the 
activated signaling machinery from non-raft enzymes such 
as membrane phosphatases that could inhibit the process. By 
internalizing selective molecules, membrane rafts also play a 
role in signal termination (17).

Although originally thought as lipid-based free-floating plat-
forms—“rafts,” indeed—it became clear that membrane rafts are 
tightly connected with the cell cytoskeleton through actin-binding 
proteins such as ezrin and filamin (3) and, therefore, more similar 
to “flying kites” than “floating rafts” (2). The cross-talk between 
membrane rafts and the actin cytoskeleton is very complex: mem-
brane rafts are indeed enriched in actin-binding proteins (18, 19);  
they contain phosphatidylinositol-4,5-bisphosphate (PIP2) 
(20, 21), which is a key regulator of the actin-polymerization  
machinery that, on the other hand, regulates raft assembly and 
dynamics (22, 23).

As for membrane rafts in immunity, over the last decades it 
has become evident that these microdomains actively modulate 
immune signaling, contributing to orchestrate innate and 
acquired immune responses (24). Compartmentalization of 
signaling molecules represents indeed an essential strategy 
exploited by immune cells to integrate multiple extracellular cues 

and trigger and direct complex functions (25). In T lymphocytes, 
this is primarily achieved by the allocation of selected proteins 
into well-organized structures, such as the immunological syn-
apse (IS)—during antigen recognition—or the leading and rear 
edges—during cell migration—and, importantly, by the cluster-
ing of key signaling players into membrane rafts.

This review will describe how membrane rafts support 
T  cell activation, focusing in particular on CD28-mediated 
costimulation.

MeMBRAne RAFTS in T CeLL 
ACTivATiOn

In order to become fully activated, T cells require a double signal. 
The first signal is T  cell receptor (TCR) ligation by peptide-
major histocompatibility complex on antigen-presenting cells 
(APCs); the second signal derives from the interaction between 
a coreceptor on the T cell with counter-receptors expressed by 
APCs. The major coreceptor molecule expressed by T  cells is 
CD28, whose ligands on professional APCs are CD80/B7.1 and  
CD86/B7.2 (26–28).

The combination of antigen recognition and costimulation 
results in the formation of a mature IS (29), a dynamic structure 
whose role is to regulate T cell function by integrating different 
signals and, thus, determining the fate of an antigenic stimula-
tion. The IS, also defined as supramolecular activation cluster 
(SMAC), is described as a “bull’s eye structure,” organized in a 
central region (c-SMAC) and a peripheral region (p-SMAC) (30). 
Several proteins involved in T cell signaling, such as TCR/CD3, 
CD28, protein kinase Cθ (PKCθ), lymphocyte specific protein-
tyrosine kinase (Lck), and zeta-chain-associated protein kinase 
70 (ZAP-70) are located in the c-SMAC, surrounded by a ring of 
cytoskeletal or adhesion molecules, forming the p-SMAC, which 
provides structural support to the IS. Antigen recognition occurs 
in the c-SMAC, while the p-SMAC maintains the architecture 
of the IS and stabilizes the T cell–APC conjugation. The spatial 
organization of the IS is intimately correlated to its function and 
ensures a fine regulation of T cell activation: indeed, the integra-
tion of different signals occurring at the level of the IS ensures 
both the sensitivity and the specificity of T cell responses.

The IS is characterized by a peculiar lipid composition, which 
differs from the lipid composition of other membrane regions 
(31). Live-cell imaging experiments have elegantly shown that 
raft lipid localization is regulated during the IS formation: rafts 
first enrich in the center of the synapse and then move to the 
periphery (31, 32).

Importantly, the functional relevance of membrane rafts is 
supported by the observation that several signaling molecules 
involved in T cell activation can be found in raft domains. The 
Src kinase Lck, which is activated immediately after TCR trig-
gering, is acylated on two cysteine residues on its N-terminus, 
thus being targeted to membrane rafts (33). This is crucial for 
Lck-mediated tyrosine phosphorylation, as demonstrated by the 
fact that Lck mutants resistant to acylation do not localize to the 
plasma membrane and do not fully activate downstream signal-
ing (34). Also the linker for activation of T cells (LAT) localizes to 
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raft domains. Upon TCR engagement, LAT is phosphorylated by 
ZAP-70 and, consequently, activates several signaling pathways 
(35, 36). Mutations preventing LAT palmitoylation inhibit LAT 
phosphorylation by ZAP-70 and hinder TCR signal transduction 
(37, 38). Also PKCθ is localized to membrane rafts and clusters at 
the IS in CD3/CD28-stimulated T cells; PKCθ raft translocation 
depends on Lck and is crucial for downstream NF-κB activation 
(39). In addition, the activation of phosphoinositide 3-kinase 
(PI3K)/Akt signaling pathway, which is crucial for T cell activa-
tion, has been shown to be tightly connected to the presence of 
raft nanodomains (40).

Altogether, these results support a model in which lipid rafts 
act as a docking platform, where the actors involved in T cell acti-
vation can organize and integrate downstream signaling events.

In T cells, the coupling of the outer and inner lipid microdo-
mains is mediated by cholesterol. By contrast, the crosslinking of 
TCR/CD3 triggers the formation of large, stable rafts indepen-
dently of cholesterol (41). These results are explained by the role 
of CD28 in the generation of membrane rafts.

CD28 COSTiMULATiOn in T CeLL 
ACTivATiOn

The costimulatory molecule CD28 plays a crucial role in deter-
mining T cell sensitivity. Its ligands CD80 and CD86 are highly 
expressed by pathogen-activated professional APCs, such as 
mature dendritic cells, macrophages, and activated B cells. As a 
consequence, CD28 costimulation occurs in the context of infec-
tion and/or inflammation, thus representing a possible control 
mechanism for avoiding excessive T cell responses. Accordingly, 
CD28 has been indicated as an important regulator of autoimmune 
diseases (42). Interestingly, genome-wide studies on patients have 
associated single nucleotide polymorphisms in the CD28 gene to 
increased risk for autoimmune disease (43). Notably, two recent 
works appointed CD28 signaling pathway as the direct target of 
PD-1 based-therapy, thus providing intriguing insights for the 
improvement of current immune-therapies against cancer and 
viral infections (44, 45).

CD28 costimulation is indeed fundamental for full T  cell 
activation, as it lowers the stimulation threshold of naïve T cells, 
in terms of number of triggered TCRs (28), preventing anergy 
and enhancing cytokine production, such as interleukin-2 (IL-2), 
and lymphocyte proliferation (46). T  lymphocytes from CD28 
knockout mice can be activated by increasing antigen doses, 
showing that the signals delivered by CD28 can be replaced, at 
least in part, by stronger TCR signaling (27, 47). These results 
suggest that CD28 functions as a general amplifier of early TCR 
signaling, thereby determining the sensitivity of the adaptive 
immune response. However, several studies have highlighted that 
CD28 regulates T cell activation not only quantitatively but also 
qualitatively (48).

Numerous works have demonstrated that CD28 costimula-
tion regulates T  cell function, by enhancing several signaling 
pathways and, finally, tuning gene transcription (49, 50). This can 
be achieved thanks to the presence of highly conserved tyrosine- 
and proline-rich signaling motifs on CD28 cytosolic tail, which 
are phosphorylated following CD3/CD28 stimulation and act 

as docking sites for the recruitment through their SH2 and/or 
SH3 domains of several downstream factors (51), such as PI3K 
(52, 53), Tec and Itk protein-tyrosine kinases (54–56), growth 
factor receptor-bound protein 2 (Grb2) (57), Grb2-related adap-
tor protein (Gads) (58), Lck (59), PKCθ (60, 61), Filamin A and 
associated NF-κB inducing kinase (22, 62), the guanine nucleo-
tide exchange factor Vav1, and associated phosphatidylinositol 
4,5-biphosphate kinases (PIP5Ks) α and β (23, 63).

Importantly, CD28-mediated costimulation is intrinsically 
linked to the reorganization of membrane rafts at T lymphocyte 
plasma membrane.

CD28 COSTiMULATiOn AnD  
MeMBRAne RAFTS

We and others have shown that CD28 coengagement results in 
membrane rafts clustering at the site of TCR triggering (22, 64–69). 
Rafts recruitment into the IS requires indeed CD28 signaling and 
is not observed in T cells stimulated by CD3-specific antibodies 
or through the TCR only (22, 64, 69). In addition, CD28-induced 
membrane raft assembly may precede TCR triggering and prepare 
a signaling microdomain for the upcoming IS (70).

CD28-mediated raft recruitment is a central event for the 
orchestration of TCR signaling. Indeed, CD28 coengagement 
by Abs or natural ligands protects the action of TCR-activated 
kinases from the inhibition mediated by phosphatases. 
Consequently, tyrosine phosphorylation of TCR signaling targets 
is stabilized and can be observed for several minutes, while being 
transient and unstable in the absence of CD28 costimulation (64). 
Quantitative phosphoproteomic analysis confirmed that CD3/
CD28 stimulation enhances the phosphorylation of sites that are 
usually modified by CD3 stimulation (71).

As mentioned before, several proteins involved in TCR 
signaling have been found associated with membrane rafts and, 
at least for some of them, the recruitment to the IS depends on 
CD28-triggered organization of lipid domains. Lck, for example, 
accumulates at the IS in a CD28-dependent way and this process 
requires the CD28 COOH-terminal PxxPP motif and Vav1 (69).

Also PKCθ clusters at the IS upon CD3/CD28 engagement 
translocating to membrane rafts (39). Its association with CD28 
is necessary for the activation of downstream signaling as NF-κB 
pathway and plays a crucial role for the differentiation of Th2 and 
Th17 subtypes, but not Th1 (61, 72, 73). The lymphoid cell-specific 
actin-uncapping protein Rltpr binds to CD28 and is required for 
the relocation of PKCθ and CARD-containing MAGUK protein 1  
(Carma1) at the central region of the IS (74, 75).

The group of Tasken has described a further CD28-dependent 
mechanism of T  cell regulation, involving cyclic adenosine 
monophosphate (cAMP) and protein kinase A (PKA). It has been 
known for a long time that TCR ligation induces an increase in 
cAMP production (76), which in turns results in PKA recruit-
ment to lipid rafts via ezrin and leads to the inhibition of T cell 
function and proliferation (77). However, when the costimula-
tory signal delivered by CD28 is triggered, the phosphodiesterase 
enzyme PDE4 is recruited to lipid rafts; PDE4 locally degrades the 
TCR-induced cAMP pool, thus counteracting cAMP-mediated 
inhibition of T cell functions (78, 79). The recruitment of PDE4 
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FigURe 1 | CD28 orchestrates membrane raft trapping at the immunological synapse (IS). The engagement of both the T cell receptor (TCR) and CD28 by the 
interaction with a professional antigen-presenting cell (APC) results in the formation of a mature IS, characterized by the clustering of membrane rafts. CD28 
cytosolic tail binds Filamin A and the nucleotide-exchange factor Vav1, thus regulating the action of cell division control protein 42 (Cdc42), Wiskott–Aldrich 
Syndrome protein (WASP) and actin-related protein 2/3 complex (ARP2/3) proteins, which are responsible for increased actin polymerization at the IS. CD28, 
through Vav1, recruits phosphatidylinositol 4,5-biphosphate kinases (PIP5Ks) to the IS and promotes PIP5K-dependent production of phosphatidylinositol-4,5-
bisphosphate (PIP2). PIP5Ks are pivotal for the recruitment of Filamin A and membrane rafts and sustain actin polymerization. The molecular interactions initiated by 
CD28 result in the cytoskeletal reorganization associated with membrane raft clustering at the IS.
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to lipid rafts depends on CD28 (78) and involves PI3K activity 
and PIP3 production (79).

The dynamic and functional assembly of the IS depends on 
actin cytoskeleton rearrangements (80). The actin cytoskeleton 
drives the contact between the T  cell and the APC not only 
mechanically but also directly interacting with IS-associated 
signaling molecules (81). As stated above, several components 
of the actin-based cytoskeleton are enriched in lipid rafts puri-
fied from T  cells, as highlighted by mass-spectrometry-based 
proteomic analysis (3, 18, 19).

One of the most characterized functions of CD28 is the ability 
to organize the cytoskeleton. At the immune synapse, the CD3/
CD28-activated polymerization of actin is regulated by the activ-
ity of the guanine nucleotide-exchange factor Vav1 (82, 83), the 
small Rho GTPase cell division control protein 42 (Cdc42) (84), 
the Wiskott–Aldrich Syndrome protein (WASP) (66) and the 
actin-related protein 2/3 complex (ARP2/3). The ARP2/3 complex 
interacts with filamins, elongated proteins that crosslink F-actin 
thus generating and organizing dynamic cytoskeletal networks 
(85). We demonstrated that, after physiological stimulation, 

CD28 recruits Filamin A at the IS (22), where Filamin A regu-
lates TCR and CD28 signaling (22, 86). Interestingly, the absence 
of Filamin A results in decreased membrane raft clustering at 
the IS along with impaired CD28-dependent costimulation 
(22). Furthermore, Filamin A seems to contribute to the Vav1-
dependent actin-polymerization pathway to regulate raft dynam-
ics by confining them at the IS (3, 22).

Vav1 is a key regulator of cytoskeletal dynamics and T  cell 
responses: indeed, Vav1-deficient cells present impaired mem-
brane raft clustering at the IS, which correlates with defects in 
cytoskeletal reorganization and T  cell activation (67, 87, 88). 
CD28, via the adaptor protein Grb2, mediates the formation of 
Vav1/SLP-76 complex, which is crucial for initiating downstream 
signaling (82, 83).

The role of Vav1 in CD28-mediated signaling is crucial: T cells 
lacking the adaptor molecule Cbl-b display enhanced Vav1 acti-
vation and are independent of CD28 for their triggering (89), as 
well as for membrane raft clustering at the IS (90). In the absence 
of Cbl-b, the deregulated activation of the Vav1/WASP pathway 
induces receptor clustering irrespective of CD28 signaling and 
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COnCLUDing ReMARKS

Since the first demonstration in 1999 for a role of CD28 in 
controlling membrane rafts assembly at the IS (64), several 

studies have contributed to identify the molecular mechanisms 
responsible for the formation of these selective and dynamic 
signaling microdomains. Today, we know that CD28-dependent 
recruitment of membrane rafts at the IS depends on specific 
residues of the CD28 cytoplasmic domain that allow CD28 to 
recruit Vav1 and initiate signaling pathways involving PIP5Ks 
and actin-binding proteins (Figure 1). This massive actin reor-
ganization allows recruitment and trapping of membrane rafts 
in the IS and is required to sustain and amplify TCR-induced 
signaling when costimulation is provided. Thus, CD28-mediated 
assembly of membrane rafts represents an extraordinary strategy 
for spatiotemporal compartmentalization and context-specific 
amplification of signal transduction.
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