77 research outputs found

    Finite elements and the discrete variable representation in nonequilibrium Green's function calculations. Atomic and molecular models

    Get PDF
    In this contribution, we discuss the finite-element discrete variable representation (FE-DVR) of the nonequilibrium Green's function and its implications on the description of strongly inhomogeneous quantum systems. In detail, we show that the complementary features of FEs and the DVR allows for a notably more efficient solution of the two-time Schwinger/Keldysh/Kadanoff-Baym equations compared to a general basis approach. Particularly, the use of the FE-DVR leads to an essential speedup in computing the self-energies. As atomic and molecular examples we consider the He atom and the linear version of H3+_3^+ in one spatial dimension. For these closed-shell models we, in Hartree-Fock and second Born approximation, compute the ground-state properties and compare with the exact findings obtained from the solution of the few-particle time-dependent Schr\"odinger equation.Comment: 12 pages, 3 figures, submitted as proceedings of conference "PNGF IV

    Near-IR Search for Lensed Supernovae Behind Galaxy Clusters - II. First Detection and Future Prospects

    Get PDF
    Powerful gravitational telescopes in the form of massive galaxy clusters can be used to enhance the light collecting power over a limited field of view by about an order of magnitude in flux. This effect is exploited here to increase the depth of a survey for lensed supernovae at near-IR wavelengths. A pilot SN search program conducted with the ISAAC camera at VLT is presented. Lensed galaxies behind the massive clusters A1689, A1835 and AC114 were observed for a total of 20 hours split into 2, 3 and 4 epochs respectively, separated by approximately one month to a limiting magnitude J<24 (Vega). Image subtractions including another 20 hours worth of archival ISAAC/VLT data were used to search for transients with lightcurve properties consistent with redshifted supernovae, both in the new and reference data. The feasibility of finding lensed supernovae in our survey was investigated using synthetic lightcurves of supernovae and several models of the volumetric Type Ia and core-collapse supernova rates as a function of redshift. We also estimate the number of supernova discoveries expected from the inferred star formation rate in the observed galaxies. The methods consistently predict a Poisson mean value for the expected number of SNe in the survey between N_SN=0.8 and 1.6 for all supernova types, evenly distributed between core collapse and Type Ia SN. One transient object was found behind A1689, 0.5" from a galaxy with photometric redshift z_gal=0.6 +- 0.15. The lightcurve and colors of the transient are consistent with being a reddened Type IIP SN at z_SN=0.59. The lensing model predicts 1.4 magnitudes of magnification at the location of the transient, without which this object would not have been detected in the near-IR ground based search described in this paper (unlensed magnitude J~25). (abridged)Comment: Accepted by AA, matches journal versio

    Conserving Approximations in Time-Dependent Density Functional Theory

    Get PDF
    In the present work we propose a theory for obtaining successively better approximations to the linear response functions of time-dependent density or current-density functional theory. The new technique is based on the variational approach to many-body perturbation theory (MBPT) as developed during the sixties and later expanded by us in the mid nineties. Due to this feature the resulting response functions obey a large number of conservation laws such as particle and momentum conservation and sum rules. The quality of the obtained results is governed by the physical processes built in through MBPT but also by the choice of variational expressions. We here present several conserving response functions of different sophistication to be used in the calculation of the optical response of solids and nano-scale systems.Comment: 11 pages, 4 figures, revised versio

    Near-IR search for lensed supernovae behind galaxy clusters: I. Observations and transient detection efficiency

    Full text link
    Massive galaxy clusters at intermediate redshift can magnify the flux of distant background sources by several magnitudes and we exploit this effect to search for lensed distant supernovae that may otherwise be too faint to be detected. A supernova search was conducted at near infrared wavelengths using the ISAAC instrument at the VLT. The galaxy clusters Abell 1689, Abell 1835 and AC114 were observed at multiple epochs of 2 hours of exposure time, separated by a month. Image-subtraction techniques were used to search for transient objects with light curve properties consistent with supernovae, both in our new and archival ISAAC/VLT data. The limiting magnitude of the individual epochs was estimated by adding artificial stars to the subtracted images. Most of the epochs reach 90% detection efficiency at SZ(J) ~= 23.8-24.0 mag (Vega). Two transient objects, both in archival images of Abell 1689 and AC114, were detected. The transient in AC114 coincides - within the position uncertainty - with an X-ray source and is likely to be a variable AGN at the cluster redshift. The transient in Abell 1689 was found at SZ=23.24 mag, ~0.5 arcsec away from a galaxy with photometric redshift z=0.6 +/-0.15. The light curves and the colors of the transient are consistent with a reddened Type IIP supernova at redshift z=0.59 +/- 0.05. The lensing model of Abell 1689 predicts ~1.4 mag of magnification at the position of the transient, making it the most magnified supernova ever found and only the second supernova found behind a galaxy cluster. Our pilot survey has demonstrated the feasibility to find distant gravitationally magnified supernovae behind massive galaxy clusters. One likely supernova was found behind Abell 1689, in accordance with the expectations for this survey, as shown in an accompanying analysis paper.Comment: Language-edited version, 9 pages, 6 figures, accepted by A&

    Near-adiabatic parameter changes in correlated systems: Influence of the ramp protocol on the excitation energy

    Get PDF
    We study the excitation energy for slow changes of the hopping parameter in the Falicov-Kimball model with nonequilibrium dynamical mean-field theory. The excitation energy vanishes algebraically for long ramp times with an exponent that depends on whether the ramp takes place within the metallic phase, within the insulating phase, or across the Mott transition line. For ramps within metallic or insulating phase the exponents are in agreement with a perturbative analysis for small ramps. The perturbative expression quite generally shows that the exponent depends explicitly on the spectrum of the system in the initial state and on the smoothness of the ramp protocol. This explains the qualitatively different behavior of gapless (e.g., metallic) and gapped (e.g., Mott insulating) systems. For gapped systems the asymptotic behavior of the excitation energy depends only on the ramp protocol and its decay becomes faster for smoother ramps. For gapless systems and sufficiently smooth ramps the asymptotics are ramp-independent and depend only on the intrinsic spectrum of the system. However, the intrinsic behavior is unobservable if the ramp is not smooth enough. This is relevant for ramps to small interaction in the fermionic Hubbard model, where the intrinsic cubic fall-off of the excitation energy cannot be observed for a linear ramp due to its kinks at the beginning and the end.Comment: 24 pages, 6 figure

    Optical absorption spectra of finite systems from a conserving Bethe-Salpeter equation approach

    Full text link
    We present a method for computing optical absorption spectra by means of a Bethe-Salpeter equation approach, which is based on a conserving linear response calculation for electron-hole coherences in the presence of an external electromagnetic field. This procedure allows, in principle, for the determination of the electron-hole correlation function self-consistently with the corresponding single-particle Green function. We analyze the general approach for a "one-shot" calculation of the photoabsorption cross section of finite systems, and discuss the importance of scattering and dephasing contributions in this approach. We apply the method to the closed-shell clusters Na_4, Na^+_9 and Na^+_(21), treating one active electron per Na atom.Comment: 9 pages, 3 figure

    Random-phase approximation and its applications in computational chemistry and materials science

    Full text link
    The random-phase approximation (RPA) as an approach for computing the electronic correlation energy is reviewed. After a brief account of its basic concept and historical development, the paper is devoted to the theoretical formulations of RPA, and its applications to realistic systems. With several illustrating applications, we discuss the implications of RPA for computational chemistry and materials science. The computational cost of RPA is also addressed which is critical for its widespread use in future applications. In addition, current correction schemes going beyond RPA and directions of further development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012

    Interleukin-21 Is Required for the Development of Type 1 Diabetes in NOD Mice

    Get PDF
    OBJECTIVE: Interleukin (IL)-21 is a type 1 cytokine that has been implicated in the pathogenesis of type 1 diabetes via the unique biology of the nonobese diabetic (NOD) mouse strain. The aim of this study was to investigate a causal role for IL-21 in type 1 diabetes. RESEARCH DESIGN AND METHODS: We generated IL-21R–deficient NOD mice and C57Bl/6 mice expressing IL-21 in pancreatic β-cells, allowing the determination of the role of insufficient and excessive IL-21 signaling in type 1 diabetes. RESULTS: Deficiency in IL-21R expression renders NOD mice resistant to insulitis, production of insulin autoantibodies, and onset of type 1 diabetes. The lymphoid compartment in IL-21R−/− NOD is normal and does not contain an increased regulatory T-cell fraction or diminished effector cytokine responses. However, we observed a clear defect in autoreactive effector T-cells in IL-21R−/− NOD by transfer experiments. Conversely, overexpression of IL-21 in pancreatic β-cells induced inflammatory cytokine and chemokines, including IL-17A, IL17F, IFN-γ, monocyte chemoattractant protein (MCP)-1, MCP-2, and interferon-inducible protein-10 in the pancreas. The ensuing leukocytic infiltration in the islets resulted in destruction of β-cells and spontaneous type 1 diabetes in the normally diabetes-resistant C57Bl/6 and NOD × C57Bl/6 backgrounds. CONCLUSIONS: This work provides demonstration of the essential prodiabetogenic activities of IL-21 on diverse genetic backgrounds (NOD and C57BL/6) and indicates that IL-21 blockade could be a promising strategy for interventions in human type 1 diabetes

    Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux

    Get PDF
    corecore