23 research outputs found

    Social considerations for the cultivation of industrial crops on marginal agricultural land as feedstock for bioeconomy

    Get PDF
    Marginal agricultural land (MAL) has received much attention in research and policy formation as a potential resource for cultivating biomass for energy and biobased products. However, it is still unclear whether biomass from MAL meets the requirements of social sustainability. This study develops a conceptual linkage between value-chain analysis and social life-cycle analysis (S-LCA), and assesses both positive impacts (handprints) and negative impacts (footprints). A participatory approach including interviews and surveys was used to understand views and perceptions of the relevant stakeholders. A systemic strategy was applied to analyze value-chain activities, understand challenges, and identify competitive advantages and disadvantages. For S-LCA, the variety of impacts and indicators was met through a literature review and a consistent scoring system. The cultivation of perennial crops on MAL tends to cause skepticism among stakeholders, who are concerned about long-term commitment and biodiversity risks. Annual crops, on the other hand, are perceived by all stakeholder categories as very promising opportunities across all impact categories and indicators. They can facilitate income diversification and offer smart sustainable cropping options through crop rotation, agroforestry, etc. Most of the technological pathways examined are highly innovative, have a low technological readiness level, and are still at the early market development stage. As such they are ranked by stakeholders as medium opportunities for short-term implementation. In contrast, pyrolysis to industrial heat, ethanol from switchgrass, insulation material from hemp, and biogas/biomethane from sorghum are considered opportunities with good chances of being implemented in the short term. © 2022 The Authors. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons, Ltd

    Environmental and cultivar variability in composition, content and biological activity of phenolic acids and alkylresorcinols of winter wheat grains from a multi-site field trial across Europe

    Get PDF
    Different factors such as the genotype, environmental conditions, temperature stress, solar radiation and others can influence the phytochemical status of plants. The concentration of phenolic acids and alkylresorciols (ARs) as well as their chemical composition and biological activity have been determined in twelve winter wheat cultivars grown at eight European locations. This was the first winter wheat multi-location field trial of the European Consortium for Open Field Experimentation (ECOFE). Extracts from grain were analyzed using a UPLC-PDA-ESI MS system (phenolic acids), UPLC-PDA-MS/MS (alkylresorcinols) and TLC-DPPH• test with ImageJ program (antiradical activity). The phenolic acid profile consisted of five hydroxybenzoic acid and four hydroxycinnamic acid derivatives, among which ferulic and sinapic acids were predominated. The ARs profile consisted of nine AR derivatives, among which 5-n-heneicosylresorcinol (C21:0) and 5-n-nonadecanylresorcinol (C19:0) were pre dominated. Our study showed significant differences in phenolic acids and AR content between wheat cultivars, as well as between locations. We observed a positive correlation between the biological activity of extracts and the total amount of phenolic acids and ARs. Two cultivars, Chambo and Julius (average of all sites) and samples from the Spanish site (average of all cultivars) showed the highest content and composition of nutritional substances

    Accumulation of α-synuclein mediates podocyte injury in Fabry nephropathy

    Get PDF
    Current therapies for Fabry disease are based on reversing intracellular accumulation of globotriaosylceramide (Gb3) by enzyme replacement therapy (ERT) or chaperone-mediated stabilization of the defective enzyme, thereby alleviating lysosomal dysfunction. However, their effect in the reversal of end-organ damage, like kidney injury and chronic kidney disease, remains unclear. In this study, ultrastructural analysis of serial human kidney biopsies showed that long-term use of ERT reduced Gb3 accumulation in podocytes but did not reverse podocyte injury. Then, a CRISPR/Cas9–mediated α-galactosidase knockout podocyte cell line confirmed ERT-mediated reversal of Gb3 accumulation without resolution of lysosomal dysfunction. Transcriptome-based connectivity mapping and SILAC-based quantitative proteomics identified α-synuclein (SNCA) accumulation as a key event mediating podocyte injury. Genetic and pharmacological inhibition of SNCA improved lysosomal structure and function in Fabry podocytes, exceeding the benefits of ERT. Together, this work reconceptualizes Fabry-associated cell injury beyond Gb3 accumulation, and introduces SNCA modulation as a potential intervention, especially for patients with Fabry nephropathy.publishedVersio

    Marginal Agricultural Land Low-Input Systems for Biomass Production

    Get PDF
    This study deals with approaches for a social-ecological friendly European bioeconomy based on biomass from industrial crops cultivated on marginal agricultural land. The selected crops to be investigated are: Biomass sorghum, camelina, cardoon, castor, crambe, Ethiopian mustard, giant reed, hemp, lupin, miscanthus, pennycress, poplar, reed canary grass, safflower, Siberian elm, switchgrass, tall wheatgrass, wild sugarcane, and willow. The research question focused on the overall crop growth suitability under low-input management. The study assessed: (i) How the growth suitability of industrial crops can be defined under the given natural constraints of European marginal agricultural lands; and (ii) which agricultural practices are required for marginal agricultural land low-input systems (MALLIS). For the growth-suitability analysis, available thresholds and growth requirements of the selected industrial crops were defined. The marginal agricultural land was categorized according to the agro-ecological zone (AEZ) concept in combination with the marginality constraints, so-called ‘marginal agro-ecological zones’ (M-AEZ). It was found that both large marginal agricultural areas and numerous agricultural practices are available for industrial crop cultivation on European marginal agricultural lands. These results help to further describe the suitability of industrial crops for the development of social-ecologically friendly MALLIS in Europe

    Perennial biomass cropping and use: Shaping the policy ecosystem in European countries

    Get PDF
    Demand for sustainably produced biomass is expected to increase with the need to provide renewable commodities, improve resource security and reduce greenhouse gas emissions in line with COP26 commitments. Studies have demonstrated additional environmental benefits of using perennial biomass crops (PBCs), when produced appropriately, as a feedstock for the growing bioeconomy, including utilisation for bioenergy (with or without carbon capture and storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) (2023–27) objectives provided they are carefully integrated into farming systems and landscapes. Despite significant research and development (R&D) investment over decades in herbaceous and coppiced woody PBCs, deployment has largely stagnated due to social, economic and policy uncertainties. This paper identifies the challenges in creating policies that are acceptable to all actors. Development will need to be informed by measurement, reporting and verification (MRV) of greenhouse gas emissions reductions and other environmental, economic and social metrics. It discusses interlinked issues that must be considered in the expansion of PBC production: (i) available land; (ii) yield potential; (iii) integration into farming systems; (iv) R&D requirements; (v) utilisation options; and (vi) market systems and the socio-economic environment. It makes policy recommendations that would enable greater PBC deployment: (1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; (2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low-carbon bioenergy and bioproducts; (3) support innovation in biomass utilisation value chains; and (4) continue long-term, strategic R&D and education for positive environmental, economic and social sustainability impacts

    Building the Policy Ecosystem in Europe for Cultivation and Use of Perennial Biomass Crops

    Get PDF
    Perennial biomass crops (PBCs) can potentially contribute to all ten Common Agricultural Policy (2023-27) objectives and up to eleven of the seventeen UN Sustainable Development Goals. This paper discusses interlinked issues that must be considered in the expansion of PBC production: i) available land; ii) yield potential; iii) integration into farming systems; iv) research and development requirements; v) utilisation options; and vi) market systems and the socio-economic environment. The challenge to create development pathways that are acceptable for all actors, relies on measurement, reporting and verification of greenhouse gas emissions reduction in combination with other environmental, economic and social aspects. This paper makes the following policy recommendations to enable greater PBC deployment: 1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; 2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low carbon bioenergy and bio-products; 3) support innovation in biomass utilisation value chains; and 4) continue long-term, strategic research and development and education for positive environmental, economic and social sustainability impacts. © 2023 ETA-Florence Renewable Energies

    Energy yield decline of Sida hermaphrodita harvested for biogas production

    No full text
    The perennial and herbaceous plant Sida hermaphrodita L. Rusby (Sida) has been investigated intensively with respect to its use as a solid biofuel for combustion and, to a lesser extent, for continuous biogas production. Since biogas production provides many opportunities for economic farm diversification, this study compared the biogas potential of Sida with common biogas crops silage maize (Zea mays L.) and cup plant (Silphium perfoliatum L.). To this end biomass samples were collected from a randomized field trial in Southwest Germany during the vegetative stage in five consecutive years starting in 2014. Biogas batchtests revealed constant specific-methane yields of 279 ± 8 LN kgVS−1 for Sida, significantly lower than for maize (335 ± 5 LN kgVS−1) and significantly higher than for cup plant (264.3 ± 3.7 LN kgVS−1). The annual Sida dry matter biomass yields declined significantly by 51% from 2015 (18.2 ± 2.6 Mg ha−1) to 2018 (9.2 ± 4.8 Mg ha−1) as a result of the summer harvest regime. This, in turn, led to a significant decline in Sida's total annual energy yields. Consequently, the average annual Sida energy yield (3549 ± 901 L heating oil equivalents (HOE) ha−1) was significantly lower than for maize (6611 ± 1186 L HOE ha−1) and cup plant (5261 ± 974 L HOE ha−1). These results clearly indicate that harvesting Sida during the vegetative stage for biogas production significantly decreases its energy yield over time. Therefore, Sida can be used economically and ecologically more sustainable for combustion using the dead plant biomass harvested in winter, while cup plant proved competitive to maize for biogas production

    Improving combustion quality of Miscanthus by adding biomass from perennial flower-rich wild plant species

    No full text
    Miscanthus (ANDERSSON) is considered a promising perennial industrial crop for providing biomass in a growing bioeconomy. One approach to increasing the biodiversity-enhancing ecosystem services of Miscanthus is the co-cultivation of flower-rich native wild plant species (WPS), for example, the perennial WPS common tansy (Tanacetum vulgare L.) and mugwort (Artemisia vulgaris L.), as well as the biennial WPS wild teasel (Dipsacus fullonum L.) and yellow melilot (Melilotus officinalis L.). This study tested whether these selected WPS would be as suitable for combustion as Miscanthus, in this case the sterile hybrid Miscanthus x giganteus Greef et Deuter, allowing for a mixing of the biomasses. By doing so, no additional value chain (e.g. biogas production) would be necessary to economically exploit the diversification of the agricultural system for bioenergy production. Feedstock samples of Miscanthus and the four above-mentioned WPS from a field trial in southwest Germany were used to investigate the combustion characteristics as well as the higher heating value (HHV). It was found that all WPS exhibited better combustion properties than Miscanthus with respect to ash melting behavior at similar HHVs of 16.3–17.5 MJ kg−1. From an admixture of >30% WPS to the Miscanthus biomass, a significant increase in the ash melting temperature by 20% from 1000 to 1200 °C was shown. Thus, the mixture of WPS and Miscanthus could potentially improve the combustion quality, leading to reduced costs in the incineration plant operation process. However, the reduced costs of incineration should be greater than the loss in productivity due to the lower biomass yields from the WPS. This is highly dependent on the particular site conditions and the establishment success of the WPS and needs to be investigated in long-term studies

    Comparison of thermochemical conversion and anaerobic digestion of perennial flower-rich herbaceous wild plant species for bioenergy production

    No full text
    The combustion quality of three perennial wild plant species Tanacetum vulgare L., Centaurea nigra L. and Artemisia vulgaris L. was investigated in comparison to the energy yield obtained from anaerobic digestions of these biomasses. Combustion resulted in 1.5–2.8 times higher energy yield compared to anaerobic digestion. All wild plants showed a similar higher heating value to Miscanthus × giganteus Greef et Deuter and Panicum virgatum L. (16.0–17.0 MJ kg−1). The ash-melting behavior of all wild plants was like Sida hermaphrodita L. Rusby, since the ash did not sinter at 1200 °C. However, Artemisia vulgaris L. had highest ash content (5.2–5.7% of dry matter) with a low ash melting behavior (1000 °C) attributed to a high potassium content and calculated phase composition. Therefore, careful consideration should be given to select the wild plants to meet the requirements for their use as solid biofuels in residential and commercial applications
    corecore