11 research outputs found

    TeraHertz Exploration and Zooming-in for Astrophysics (THEZA): ESA Voyage 2050 White Paper

    Get PDF
    This paper presents the ESA Voyage 2050 White Paper for a concept of TeraHertz Exploration and Zooming-in for Astrophysics (THEZA). It addresses the science case and some implementation issues of a space-borne radio interferometric system for ultra-sharp imaging of celestial radio sources at the level of angular resolution down to (sub-) microarcseconds. THEZA focuses at millimetre and sub-millimetre wavelengths (frequencies above \sim300~GHz), but allows for science operations at longer wavelengths too. The THEZA concept science rationale is focused on the physics of spacetime in the vicinity of supermassive black holes as the leading science driver. The main aim of the concept is to facilitate a major leap by providing researchers with orders of magnitude improvements in the resolution and dynamic range in direct imaging studies of the most exotic objects in the Universe, black holes. The concept will open up a sizeable range of hitherto unreachable parameters of observational astrophysics. It unifies two major lines of development of space-borne radio astronomy of the past decades: Space VLBI (Very Long Baseline Interferometry) and mm- and sub-mm astrophysical studies with "single dish" instruments. It also builds upon the recent success of the Earth-based Event Horizon Telescope (EHT) -- the first-ever direct image of a shadow of the super-massive black hole in the centre of the galaxy M87. As an amalgam of these three major areas of modern observational astrophysics, THEZA aims at facilitating a breakthrough in high-resolution high image quality studies in the millimetre and sub-millimetre domain of the electromagnetic spectrum.Comment: White Paper submitted in response to the ESA Call Voyage 205

    The science case and challenges of space-borne sub-millimeter interferometry

    Get PDF
    Ultra-high angular resolution in astronomy has always been an important vehicle for making fundamental discoveries. Recent results in direct imaging of the vicinity of the supermassive black hole in the nucleus of the radio galaxy M87 by the millimeter VLBI system Event Horizon Telescope and various pioneering results of the Space VLBI mission RadioAstron provided new momentum in high angular resolution astrophysics. In both mentioned cases, the angular resolution reached the values of about 10–20 microarcseconds (0.05–0.1 nanoradian). Further developments towards at least an order of magnitude “sharper” values, at the level of 1 microarcsecond are dictated by the needs of advanced astrophysical studies. The paper emphasis that these higher values can only be achieved by placing millimeter and submillimeter wavelength interferometric systems in space. A concept of such the system, called Terahertz Exploration and Zooming-in for Astrophysics, has been proposed in the framework of the ESA Call for White Papers for the Voyage 2050 long term plan in 2019. In the current paper we present new science objectives for such the concept based on recent results in studies of active galactic nuclei and supermassive black holes. We also discuss several approaches for addressing technological challenges of creating a millimeter/sub-millimeter wavelength interferometric system in space. In particular, we consider a novel configuration of a space-borne millimeter/sub-millimeter antenna which might resolve several bottlenecks in creating large precise mechanical structures. The paper also presents an overview of prospective space-qualified technologies of low-noise analogue front-end instrumentation for millimeter/sub-millimeter telescopes. Data handling and processing instrumentation is another key technological component of a sub-millimeter Space VLBI system. Requirements and possible implementation options for this instrumentation are described as an extrapolation of the current state-of-the-art Earth-based VLBI data transport and processing instrumentation. The paper also briefly discusses approaches to the interferometric baseline state vector determination and synchronisation and heterodyning system. The technology-oriented sections of the paper do not aim at presenting a complete set of technological solutions for sub-millimeter (terahertz) space-borne interferometers. Rather, in combination with the original ESA Voyage 2050 White Paper, it sharpens the case for the next generation microarcsecond-level imaging instruments and provides starting points for further in-depth technology trade-off studies.</p

    Hydrology Affects Environmental and Spatial Structuring of Microalgal Metacommunities in Tropical Pacific Coast Wetlands

    Get PDF
    The alternating climate between wet and dry periods has important effects on the hydrology and therefore on niche-based processes of water bodies in tropical areas. Additionally, assemblages of microorganism can show spatial patterns, in the form of a distance decay relationship due to their size or life form. We aimed to test spatial and environmental effects, modulated by a seasonal flooding climatic pattern, on the distribution of microalgae in 30 wetlands of a tropical dry forest region: the Pacific coast of Costa Rica and Nicaragua. Three surveys were conducted corresponding to the beginning, the highest peak, and the end of the hydrological year during the wet season, and species abundance and composition of planktonic and benthic microalgae was determined. Variation partitioning analysis (as explained by spatial distance or environmental factors) was applied to each seasonal dataset by means of partial redundancy analysis. Our results show that microalgal assemblages were structured by spatial and environmental factors depending on the hydrological period of the year. At the onset of hydroperiod and during flooding, neutral effects dominated community dynamics, but niche-based local effects resulted in more structured algal communities at the final periods of desiccating water bodies. Results suggest that climatemediated effects on hydrology can influence the relative role of spatial and environmental factors on metacommunities of microalgae. Such variability needs to be accounted in order to describe accurately community dynamics in tropical coastal wetlands.Agencia Española de Cooperación y Desarrollo/[A1024073/09]/AECID/EspañaAgencia Española de Cooperación y Desarrollo/[A/031019/10]/AECID/EspañaAgencia Española de Cooperación y Desarrollo/[C/032994/10]/AECID/EspañaAgencia Española de Cooperación y Desarrollo/[A3/ 036594/11]/AECID/EspañaUniversidad de Costa Rica/[741-B1-517]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP)UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiologí

    Metamodel-based generative design of wind turbine foundations

    Get PDF
    Wind turbines play an integral role in energy transition agendas. The optimized design of wind turbine foundations is a complex and intricate task that requires iterative running of computationally-intensive and time-consuming finite element models. However, given the popularity of these structures over the past two decades, there is a wealth of data from the designs of the past projects that can be used for the data-driven modeling of these structures. Given the demonstrated accuracy and success of metamodels as an alternative approach for other computationally-intensive simulation-based problems, this study aims to develop a generative-design framework for the optimization of wind turbine foundations using a metamodel, as a complementary step to more accurate finite element modeling, to reduce the overall design time without compromising the accuracy. To this end, first, the random forest method is used to develop a multi-output metamodel for the wind turbine foundations based on a set of historical data. Then, a metaheuristic method, i.e., NSGA II, is adopted to optimize the design process based on the developed metamodel. In a case study, a wind turbine foundation was designed using the proposed framework and the accuracy of the output was assessed in terms of the ultimate bending moment. The results of the case study indicate that the proposed method provides a significant time gain (i.e., 99.93%) without compromising the accuracy (i.e., 1.75% for the percent error). Besides, the conducted study also offers designers a better understanding of the importance of each design variable and how certain design variables influence the moment-rotation behavior of the wind turbine foundatio

    Deep Horizon: A machine learning network that recovers accreting black hole parameters

    Get PDF
    Context. The Event Horizon Telescope recently observed the first shadow of a black hole. Images like this can potentially be used to test or constrain theories of gravity and deepen the understanding in plasma physics at event horizon scales, which requires accurate parameter estimations. Aims. In this work, we present Deep Horizo

    TeraHertz Exploration and Zooming-in for Astrophysics (THEZA): ESA Voyage 2050 White Paper

    No full text
    The astrophysical agenda of the 21st century requires a very sharp view of celestial objects. High angular resolution studies are essential for fundamental studies of a broad variety of astrophysical phenomena ranging from relativistic physics of black holes, their gravitational and electromagnetic imprints, violent transient processes, including those producing detectable gravitational waves, birth and evolution of planetary systems. Over the past decades, radio astronomy made huge leap in achieving ground-breaking angular resolution measured in tens of microarcseconds (one tenth of nanoradian and better). Recently a global Event Horizon Telescope (EHT) collaboration obtained first direct images of the shadow of a super-massive black hole in the nucleus of the active galaxy M87. These observations were conducted at 230 GHz. The two first generation Space Very Long Baseline Interferometry (VLBI) missions, VSOP/HALCA led by the Japan Aerospace Exploration Agency (JAXA) and RadioAstron led by the Russia Roscosmos State Corporation and Russia Academy of Sciences, achieved the highest angular resolution at frequencies from 0.3 to 22 GHz in observations conducted in the period 1997 - 2019. The next step in advancing high angular resolution radio astronomy is in combining high frequency (millimeter and sub-millimeter wavelengths) and interferometric baselines exceeding the Earth diameter. The present THEZA White Paper describes a combination which would unify technology developments in giga-/tera-hertz instrumentation and space-borne radio astronomy. The current preprint version of the THEZA White Paper is slightly re-formatted and edited comparing to the official submitted version

    The science case and challenges of space-borne sub-millimeter interferometry

    Get PDF
    Ultra-high angular resolution in astronomy has always been an important vehicle for making fundamental discoveries. Recent results in direct imaging of the vicinity of the supermassive black hole in the nucleus of the radio galaxy M87 by the millimeter VLBI system Event Horizon Telescope and various pioneering results of the Space VLBI mission RadioAstron provided new momentum in high angular resolution astrophysics. In both mentioned cases, the angular resolution reached the values of about 10–20 microarcseconds (0.05–0.1 nanoradian). Further developments towards at least an order of magnitude “sharper” values, at the level of 1 microarcsecond are dictated by the needs of advanced astrophysical studies. The paper emphasis that these higher values can only be achieved by placing millimeter and submillimeter wavelength interferometric systems in space. A concept of such the system, called Terahertz Exploration and Zooming-in for Astrophysics, has been proposed in the framework of the ESA Call for White Papers for the Voyage 2050 long term plan in 2019. In the current paper we present new science objectives for such the concept based on recent results in studies of active galactic nuclei and supermassive black holes. We also discuss several approaches for addressing technological challenges of creating a millimeter/sub-millimeter wavelength interferometric system in space. In particular, we consider a novel configuration of a space-borne millimeter/sub-millimeter antenna which might resolve several bottlenecks in creating large precise mechanical structures. The paper also presents an overview of prospective space-qualified technologies of low-noise analogue front-end instrumentation for millimeter/sub-millimeter telescopes. Data handling and processing instrumentation is another key technological component of a sub-millimeter Space VLBI system. Requirements and possible implementation options for this instrumentation are described as an extrapolation of the current state-of-the-art Earth-based VLBI data transport and processing instrumentation. The paper also briefly discusses approaches to the interferometric baseline state vector determination and synchronisation and heterodyning system. The technology-oriented sections of the paper do not aim at presenting a complete set of technological solutions for sub-millimeter (terahertz) space-borne interferometers. Rather, in combination with the original ESA Voyage 2050 White Paper, it sharpens the case for the next generation microarcsecond-level imaging instruments and provides starting points for further in-depth technology trade-off studies.Peer reviewe
    corecore