130 research outputs found

    Regulation of lin-4 miRNA expression, organismal growth and development by a conserved RNA binding protein in C. elegans

    Get PDF
    AbstractTranscription and multiple processing steps are required to produce specific 22 nucleotide microRNAs (miRNAs) that can regulate the expression of target genes. In C. elegans, mature lin-4 miRNA accumulates at the end of the first larval stage to repress its direct targets lin-14 and lin-28, allowing the progression of several somatic cell types to later larval fates. In this study, we characterized the expression of endogenous lin-4 and found that temporally regulated independent transcripts, but not constitutive lin-4 containing RNAs derived from an overlapping gene, are processed to mature lin-4 miRNA. Through an RNAi screen, we identified a conserved RNA binding protein gene rbm-28 (R05H10.2), homologous to the human RBM28 and yeast Nop4p proteins, that is important for lin-4 expression in C. elegans. We also demonstrate that rbm-28 genetically interacts with the lin-4 developmental timing pathway and uncover a previously unrecognized role for lin-14 and lin-28 in coordinating organismal growth

    Spectral analysis and resolving spatial ambiguities in human sound localization

    Get PDF
    This dissertation provides an overview of my research over the last five years into the spectral analysis involved in human sound localization. The work involved conducting psychophysical tests of human auditory localization performance and then applying analytical techniques to analyze and explain the data. It is a fundamental thesis of this work that human auditory localization response directions are primarily driven by the auditory localization cues associated with the acoustic filtering properties of the external auditory periphery, i.e., the head, torso, shoulder, neck, and external ears. This work can be considered as composed of three parts. In the first part of this work, I compared the auditory localization performance of a human subject and a time-delay neural network model under three sound conditions: broadband, high-pass, and low-pass. A β€œblack-box” modeling paradigm was applied. The modeling results indicated that training the network to localize sounds of varying center-frequency and bandwidth could degrade localization performance results in a manner demonstrating some similarity to human auditory localization performance. As the data collected during the network modeling showed that humans demonstrate striking localization errors when tested using bandlimited sound stimuli, the second part of this work focused on human sound localization of bandpass filtered noise stimuli. Localization data was collected from 5 subjects and for 7 sound conditions: 300 Hz to 5 kHz, 300 Hz to 7 kHz, 300 Hz to 10 kHz, 300 Hz to 14 kHz, 3 to 8 kHz, 4 to 9 kHz, and 7 to 14 kHz. The localization results were analyzed using the method of cue similarity indices developed by Middlebrooks (1992). The data indicated that the energy level in relatively wide frequency bands could be driving the localization response directions, just as in Butler’s covert peak area model (see Butler and Musicant, 1993). The question was then raised as to whether the energy levels in the various frequency bands, as described above, are most likely analyzed by the human auditory localization system on a monaural or an interaural basis. In the third part of this work, an experiment was conducted using virtual auditory space sound stimuli in which the monaural spectral cues for auditory localization were disrupted, but the interaural spectral difference cue was preserved. The results from this work showed that the human auditory localization system relies primarily on a monaural analysis of spectral shape information for its discrimination of directions on the cone of confusion. The work described in the three parts lead to the suggestion that a spectral contrast model based on overlapping frequency bands of varying bandwidth and perhaps multiple frequency scales can provide a reasonable algorithm for explaining much of the current psychophysical and neurophysiological data related to human auditory localization

    The effects of a controlled worksite environmental intervention on determinants of dietary behavior and self-reported fruit, vegetable and fat intake

    Get PDF
    BACKGROUND: Eating patterns in Western industrialized countries are characterized by a high energy intake and an overconsumption of (saturated) fat, cholesterol, sugar and salt. Many chronic diseases are associated with unhealthy eating patterns. On the other hand, a healthy diet (low saturated fat intake and high fruit and vegetable intake) has been found important in the prevention of health problems, such as cancer and cardio-vascular disease (CVD). The worksite seems an ideal intervention setting to influence dietary behavior. The purpose of this study is to present the effects of a worksite environmental intervention on fruit, vegetable and fat intake and determinants of behavior. METHODS: A controlled trial that included two different governmental companies (n = 515): one intervention and one control company. Outcome measurements (short-fat list and fruit and vegetable questionnaire) took place at baseline and 3 and 12 months after baseline. The relatively modest environmental intervention consisted of product information to facilitate healthier food choices (i.e., the caloric (kcal) value of foods in groups of products was translated into the number of minutes to perform a certain (occupational) activity to burn these calories). RESULTS: Significant changes in psychosocial determinants of dietary behavior were found; subjects at the intervention worksite perceived more social support from their colleagues in eating less fat. But also counter intuitive effects were found: at 12 months the attitude and self-efficacy towards eating less fat became less positive in the intervention group. No effects were found on self-reported fat, fruit and vegetable intake. CONCLUSION: This environmental intervention was modestly effective in changing behavioral determinant towards eating less fat (social support, self-efficacy and attitude), but ineffective in positively changing actual fat, fruit and vegetable intake of office workers

    Innovation Across Cultures: Connecting Leadership, Identification, and Creative Behavior in Organizations

    Get PDF
    Innovation is considered essential for today's organizations to survive and thrive. Researchers have also stressed the importance of leadership as a driver of followers' innovative work behavior (FIB). Yet, despite a large amount of research, three areas remain understudied: (a) The relative importance of different forms of leadership for FIB; (b) the mechanisms through which leadership impacts FIB; and (c) the degree to which relationships between leadership and FIB are generalizable across cultures. To address these lacunae, we propose an integrated model connecting four types of positive leadership behaviors, two types of identification (as mediating variables), and FIB. We tested our model in a global data set comprising responses of N = 7,225 participants from 23 countries, grouped into nine cultural clusters. Our results indicate that perceived LMX quality was the strongest relative predictor of FIB. Furthermore, the relationships between both perceived LMX quality and identity leadership with FIB were mediated by social identification. The indirect effect of LMX on FIB via social identification was stable across clusters, whereas the indirect effects of the other forms of leadership on FIB via social identification were stronger in countries high versus low on collectivism. Power distance did not influence the relations

    Soil networks become more connected and take up more carbon as nature restoration progresses

    Get PDF
    Soil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake. In mid- and long-term abandoned field soil, carbon uptake by fungi increases without an increase in fungal biomass or shift in bacterial-to-fungal ratio. The implication of our findings is that during nature restoration the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity. Therefore, we propose that relationships between soil food web structure and carbon cycling in soils need to be reconsidered

    Modulation of macrophage cytokine profiles during solid tumor progression: susceptibility to Candida albicans infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to attain a better understanding of the interactions between opportunist fungi and their hosts, we investigated the cytokine profile associated with the inflammatory response to <it>Candida albicans </it>infection in mice with solid Ehrlich tumors of different degrees.</p> <p>Methods</p> <p>Groups of eight animals were inoculated intraperitoneally with 5 Γ— 10<sup>6 </sup><it>C. albicans </it>7, 14 or 21 days after tumor implantation. After 24 or 72 hours, the animals were euthanized and intraperitoneal lavage fluid was collected. Peritoneal macrophages were cultivated and the levels of IFN-Ξ³, TNF-Ξ±, IL-12, IL-10 and IL-4 released into the supernatants were measured by ELISA. Kidney, liver and spleen samples were evaluated for fungal dissemination. Tumor-free animals and animals that had only been subjected to <it>C. albicans </it>infection were used as control groups.</p> <p>Results</p> <p>Our results demonstrated that the mice produced more IFN-Ξ³ and TNF-Ξ± and less IL-10, and also exhibited fungal clearance, at the beginning of tumor evolution. With the tumor progression, this picture changed: IL-10 production increased and IFN-Ξ³ and TNF-Ξ± release decreased; furthermore, there was extensive fungal dissemination.</p> <p>Conclusion</p> <p>Our results indicate that solid tumors can affect the production of macrophage cytokines and, in consequence, affect host resistance to opportunistic infections.</p

    A Negative Regulatory Loop between MicroRNA and Hox Gene Controls Posterior Identities in Caenorhabditis elegans

    Get PDF
    MicroRNAs (miRNAs) have been found to regulate gene expression across eukaryotic species, but the function of most miRNA genes remains unknown. Here we describe how the analysis of the expression patterns of a well-conserved miRNA gene, mir-57, at cellular resolution for every minute during early development of Caenorhabditis elegans provided key insights in understanding its function. Remarkably, mir-57 expression shows strong positional bias but little tissue specificity, a pattern reminiscent of Hox gene function. Despite the minor defects produced by a loss of function mutation, overexpression of mir-57 causes dramatic posterior defects, which also mimic the phenotypes of mutant alleles of a posterior Hox gene, nob-1, an Abd homolog. More importantly, nob-1 expression is found in the same two posterior AB sublineages as those expressing mir-57 but with an earlier onset. Intriguingly, nob-1 functions as an activator for mir-57 expression; it is also a direct target of mir-57. In agreement with this, loss of mir-57 function partially rescues the nob-1 allele defects, indicating a negative feedback regulatory loop between the miRNA and Hox gene to provide positional cues. Given the conservation of the miRNA and Hox gene, the regulatory mechanism might be broadly used across species. The strategy used here to explore mir-57 function provides a path to dissect the regulatory relationship between genes

    Addressing Cancer Disparities via Community Network Mobilization and Intersectoral Partnerships: A Social Network Analysis

    Get PDF
    Community mobilization and collaboration among diverse partners are vital components of the effort to reduce and eliminate cancer disparities in the United States. We studied the development and impact of intersectoral connections among the members of the Massachusetts Community Network for Cancer Education, Research, and Training (MassCONECT). As one of the Community Network Program sites funded by the National Cancer Institute, this infrastructure-building initiative utilized principles of Community-based Participatory Research (CBPR) to unite community coalitions, researchers, policymakers, and other important stakeholders to address cancer disparities in three Massachusetts communities: Boston, Lawrence, and Worcester. We conducted a cross-sectional, sociometric network analysis four years after the network was formed. A total of 38 of 55 members participated in the study (69% response rate). Over four years of collaboration, the number of intersectoral connections reported by members (intersectoral out-degree) increased, as did the extent to which such connections were reported reciprocally (intersectoral reciprocity). We assessed relationships between these markers of intersectoral collaboration and three intermediate outcomes in the effort to reduce and eliminate cancer disparities: delivery of community activities, policy engagement, and grants/publications. We found a positive and statistically significant relationship between intersectoral out-degree and community activities and policy engagement (the relationship was borderline significant for grants/publications). We found a positive and statistically significant relationship between intersectoral reciprocity and community activities and grants/publications (the relationship was borderline significant for policy engagement). The study suggests that intersectoral connections may be important drivers of diverse intermediate outcomes in the effort to reduce and eliminate cancer disparities. The findings support investment in infrastructure-building and intersectoral mobilization in addressing disparities and highlight the benefits of using CBPR approaches for such work

    Characterization of miRNAs in Response to Short-Term Waterlogging in Three Inbred Lines of Zea mays

    Get PDF
    Waterlogging of plants leads to low oxygen levels (hypoxia) in the roots and causes a metabolic switch from aerobic respiration to anaerobic fermentation that results in rapid changes in gene transcription and protein synthesis. Our research seeks to characterize the microRNA-mediated gene regulatory networks associated with short-term waterlogging. MicroRNAs (miRNAs) are small non-coding RNAs that regulate many genes involved in growth, development and various biotic and abiotic stress responses. To characterize the involvement of miRNAs and their targets in response to short-term hypoxia conditions, a quantitative real time PCR (qRT-PCR) assay was used to quantify the expression of the 24 candidate mature miRNA signatures (22 known and 2 novel mature miRNAs, representing 66 miRNA loci) and their 92 predicted targets in three inbred Zea mays lines (waterlogging tolerant Hz32, mid-tolerant B73, and sensitive Mo17). Based on our studies, miR159, miR164, miR167, miR393, miR408 and miR528, which are mainly involved in root development and stress responses, were found to be key regulators in the post-transcriptional regulatory mechanisms under short-term waterlogging conditions in three inbred lines. Further, computational approaches were used to predict the stress and development related cis-regulatory elements on the promoters of these miRNAs; and a probable miRNA-mediated gene regulatory network in response to short-term waterlogging stress was constructed. The differential expression patterns of miRNAs and their targets in these three inbred lines suggest that the miRNAs are active participants in the signal transduction at the early stage of hypoxia conditions via a gene regulatory network; and crosstalk occurs between different biochemical pathways
    • …
    corecore