Spectral Analysis and Resolving Spatial Ambiguities in Human Sound Localization

A dissertation presented to

the Faculty of Electrical and Information Engineering

of the University of Sydney

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

by

Craig T. Jin

© Craig T. Jin 2001

ALL RIGHTS RESERVED

To Eugenia

Acknowledgements

If most Serene Prince I wished to set forth in this place all the praises due to your Highness's own merits and those of your distinguished family, I should be committed to such a lengthy discourse that this preface would far outrun the rest of the text, whence I shall refrain from even attempting the task, uncertain that I could finish half of it, let alone all (Galileo Galilei in *Operations of the Geometric and Military Compass*, see Sobel, 1999).

Having lived and grown up in the United States, I am grateful to Australia for harbouring me these last 5 years and providing me with a place at the University of Sydney to pursue a meaningful course of research. As a student, I have found only generosity on the part of Australia to support my research. The Dora Lush Postgraduate Research Scholarship provided me with the funds to pursue my Ph.D. and the Australian Academy of Science provided travel funds for a 3 week workshop in the U.S.A. (Scientific Visits to the U.S.A. for Young Australian Researchers).

Of course, even when the resources on a larger scale are in place, it still requires the determined efforts of those closer to home to enable those resources to become available. In this sense, it gives me great pleasure to thank Simon Carlile for his unfailing support. Despite the fact that I have been enrolled in the Department of Electrical and Information Engineering, it has really been Simon who has supported my research from start to finish. A phrase that I have come to associate with Simon is "good taste and judgement" – a way of life, really. His guidance has been most crucial in the development of this dissertation at *every* step and his friendship most helpful in finishing it.

In the early stages of my research, Philip Leong and Marcus Schenkel provided much needed support and guidance. If you just had to get something working, Philip could always help you. Now that I've finished the easier task, Philip can teach me the harder one: fly fishing. In the early modeling work, Marcus helped me to see which issues were important and showed me how time-delay neural networks worked. I would like to thank both Philip and Marcus for their friendship and support.

In the later stages of my research, André van Schaik played a greater and greater role in the unfolding of ideas. At times, it seemed like that of all people, I needed the fewest words to describe an idea to him. Why this should be so is puzzling, for his native language and background differ from mine. André's critical eye has in numerous ways been invaluable and his concern always helped carry things along. Thanks André.

Frequently, I have felt that it would have been impossible to finish if it were not for Johahn Leung, Anna Corderoy, and Anandhi Anandan. They provided ideas, laughs, and day-to-day support in the lab. At one time, Jogi and I were the only postgraduate students in the lab and we could basically do anything we wanted to and so we did. We did the first HRTF morphing experiments together and, with Philip's help, got the water balloon into the anechoic chamber. Jogi, of course, made Microsoft's frustrating way of computing almost bearable. Anna helped tremendously with the experiments and Anandhi helped in countless ways with so many details. Jogi, Anna and Anandhi – you have such class and insight, it's a heart-felt thanks that I give you for enriching my time here immeasurably.

Then there are those discussions that changed a stale environment into an invigorating one full of humour and warmth. Oliver Behrend has shown me his understanding of those final stages. Virginia Best and Ruben Kurilowich, now in the midst of their own Ph.D.'s, have shared their research, laughs, and sympathies with me. Stacey Harris shared her honours year with me and Stephanie Hyams my first auditory localization experiment. Thanks to all of those who participated in my auditory localization experiments. Thanks to those around the physiology department and SEDAL for their friendship and more: Sam Solomon, Andrew White, Paul Martin, Tom FitzGibbon, Bogden Dreher, Paddy Fitzgerald, John Dodson, Richard Coggins.

Thanks to John Ferris and Louise Berben for the wonderful Wednesday evening outings, swims and discussions. Thanks to Andrew, Alison and little Kathleen Garvie for the relaxing break at Lake Jindabyne.

Thanks to Dennis Moore and Sanjoy Mahajan whose friendships over the years have given me so much strength and pleasure.

Thanks to my family and Eugenia's family for their unconditional support and love and for giving me a home.

Thanks to my beloved wife for her inspiration, support and love. To me, as it has been said before,

She walks in beauty, like the night Of cloudless climes and starry skies; And all that's best of dark and bright Meet in her aspect and her eyes ...

Finally, if research can be likened to a search in the forest in which nobody, not even yourself, knows or has seen exactly where you want to go, then it is by working with others that you can often find the paths that might lead in an interesting, if not always correct direction. To those who have shared the journey, I would like to say that perhaps your most valuable gift to me is something that I may not easily be able to see myself. Time passes and we change, perhaps develop. In those changes are the results of much time and effort and yet I suspect that the changes in oneself are actually the most difficult to see. But if you see them, you can reflect upon them and the gifts you've given me.

Spectral Analysis and Resolving Spatial Ambiguities in Human Sound Localization

Craig T. Jin

University of Sydney 2001

Abstract

This dissertation provides an overview of my research over the last five years into the spectral analysis involved in human sound localization. The work involved conducting psychophysical tests of human auditory localization performance and then applying analytical techniques to analyze and explain the data. It is a fundamental thesis of this work that human auditory localization response directions are primarily driven by the auditory localization cues associated with the acoustic filtering properties of the external auditory periphery, i.e., the head, torso, shoulder, neck, and external ears. This work can be considered as composed of three parts.

In the first part of this work, I compared the auditory localization performance of a human subject and a time-delay neural network model under three sound conditions: broadband, high-pass, and low-pass. A "black-box" modeling paradigm was applied. The modeling results indicated that training the network to localize sounds of varying center-frequency and bandwidth could degrade localization performance results in a manner demonstrating some similarity to human auditory localization performance.

As the data collected during the network modeling showed that humans demonstrate striking localization errors when tested using bandlimited sound stimuli, the second part of this work focused on human sound localization of bandpass filtered noise stimuli. Localization data was collected from 5 subjects and for 7 sound conditions: 300 Hz to 5 kHz, 300 Hz to 7 kHz, 300 Hz to 10 kHz, 300 Hz to 14 kHz, 3 to 8 kHz, 4 to 9 kHz, and 7 to 14 kHz. The localization results were analyzed using the method of cue similarity indices developed by Middlebrooks (1992). The data indicated that the energy level in relatively wide frequency bands could be driving the localization response directions, just as in Butler's covert peak area model (see Butler and Musicant, 1993).

The question was then raised as to whether the energy levels in the various frequency bands, as described above, are most likely analyzed by the human auditory localization system on a monaural or an interaural basis. In the third part of this work, an experiment was conducted using virtual auditory space sound stimuli in which the monaural spectral cues for auditory localization were disrupted, but the interaural spectral difference cue was preserved. The results from this work showed that the human auditory localization system relies primarily on a monaural analysis of spectral shape information for its discrimination of directions on the cone of confusion.

The work described in the three parts lead to the suggestion that a spectral contrast model based on overlapping frequency bands of varying bandwidth and perhaps multiple frequency scales can provide a reasonable algorithm for explaining much of the current psychophysical and neurophysiological data related to human auditory localization.

Table of Contents

	Abst	ract
	List	of Tables
	List	of Figures
	Glos	sary
	Prefa	nce
	0.1	Auditory Perception
	0.2	A Personal Statement
	0.3	Reading the Dissertation
1	Intro	oduction 1
	1.1	Motivation
	1.2	Outline
	1.3	Question in Perspective
	1.4	Hearing
		Notes to Chapter 1
2	Back	kground – Interaural Cues 18
	2.1	Overview
	2.2	Interaural Time Difference
		2.2.1 ITDs and Spatial Information
		2.2.2 ITDs and Psychophysics
		2.2.3 ITDs, Models, and the Auditory System
	2.3	Interaural Intensity Difference
		2.3.1 IIDs and Spatial Information
		2.3.2 IIDs and Psychophysics
		2.3.3 IIDs, Models, and the Auditory System
	2.4	Implications
		Notes to Chapter 2
3	Back	sground –
	Spec	tral Shape Cues 37
	3.1	Spectral Shape and Spatial Information
		3.1.1 Acoustics of the External Auditory Periphery
		3.1.2 Spectral Variations Across Space
	3.2	Spectral Shape and Psychophysics
		3.2.1 Primary Spectral Notch
		3.2.2 Localization of Narrow-Band Sounds

		3.2.3	Low Frequency Cues and	
			Across-Frequency Interactions	. 69
		3.2.4	Spectral Profile Analysis	. 72
		3.2.5	Discrimination of Spectral Peaks and Notches	. 74
		3.2.6	Deciphering Source Spectrum	. 76
		3.2.7	Temporal Factors and Spectral Shape	. 81
		3.2.8	Spectral Scrambling	. 83
	3.3	Comp	utational Models and Spectral Shape	. 90
		3.3.1	Template-Matching and Covert Peaks	. 90
		3.3.2	Three Sound Localization Models	. 92
	3.4	Spectr	al Shape and the Auditory System	. 98
		3.4.1	Intensity Discriminations	. 98
		3.4.2	Spectral Shape and the Auditory Nerve	. 99
		3.4.3	Spectral Shape and the Brainstem	. 100
		3.4.4	Spectral Contrast in the MGB	. 102
		3.4.5	Spectral Shape in Auditory Cortex	. 105
	3.5	Implic	cations	. 111
		Notes	to Chapter 3	. 114
4	Met	hods fo	r Sound Localization	123
	4.1	Overv		. 123
	4.2	Sound	Localization Environment and Paradigm	. 124
		4.2.1	Head Pointing Training	. 127
		4.2.2	Free-Field Sound Presentation	. 128
		4.2.3	Measurement of the Directional Transfer Functions	. 130
	12	4.2.4	vAS Sound Presentation	. 134
	4.3		Zation Analysis	. 139
		4.5.1	Quadrature Plots	. 139
		4.3.2	Spherical Statistics	. 140
		4.3.3	Spherical Interpolation	. 145
		4.3.4	Clicular Statistics	. 144
		4.3.3	to Chapter 4	. 150
		notes	to Chapter 4	. 139
5	Freq	uency	Division and Integration	165
	5.1	Overv	iew	. 165
	5.2	Previo	bus Auditory Localization Models	. 167
		5.2.1	Difficulties in Modeling Auditory Localization	. 168
		5.2.2	Localization Models using HRTFs	. 169
		5.2.3	Neural System Modeling	. 170
	5.3	Metho	ods	. 171
		5.3.1	Measuring Sound Localization Performance	. 171
		5.3.2	Measuring DTFs	. 173
		5.3.3	A Network Model of Sound Localization	. 173
	5.4	Netwo	ork Architectures	. 181
		5.4.1	MLP Architecture	. 182
		5.4.2	TDNN Architecture A	. 183

		5.4.3	TDNN Architecture B	18	4
		5.4.4	TDNN Architecture C	18	5
	5.5	Traini	ng Networks to Localize Sounds	18	6
		5.5.1	Learning Algorithm	18	6
		5.5.2	Structure of the Training Data	18	7
		5.5.3	Frequency Selective Training	18	8
	5.6	Result	ts	18	9
		5.6.1	Localization Performance of the Subject	18	9
		5.6.2	Localization Performance of the MLP	19	2
		5.6.3	Localization Performance of the TDNN		
			with Architecture A	19	5
		5.6.4	Localization Performance of the TDNN		
			with Architecture B	19	6
		5.6.5	Localization Performance of the TDNN		
			with Architecture C	19	6
		5.6.6	Restricted High Frequency Sound Localization	19	9
		5.6.7	Sound Localization at Varving Sound Levels	20	3
		5.6.8	TDNN Encoding of Temporal Information	20	6
	5.7	Discus	ssion	20	8
		5.7.1	Tonotopic Processing from a Computational Viewpoint .		8
		5.7.2	Matched Filtering and Sound Localization		0
	5.8	Conch	usions and Implications		2
	0.0	Notes	to Chapter 5		4
			The second se		
6	Loca	alizatio	n of Bandpass Sounds	21	5
	6.1	Overv	iew	21	5
	6.2	Previo	ous Localization Experiments Using		
		Bandl	imited Sounds	21	7
		6.2.1	Effect of Bandwidth on Auditory Localization	21	8
		6.2.2	Auditory Localization of Bandpass Peaks		
			and Bandstop Notches	22	4
	6.3	Metho	ods	22	9
		6.3.1	Listeners and Localization Paradigm	22	9
		6.3.2	Stimuli and Procedure	23	0
		6.3.3	Directional Transfer Functions and Directional Excitation	n Pat-	
			terns	23	2
		6.3.4	Statistical Methods for Localization Performance Data .	23	3
	6.4	Result	ts	23	4
		6.4.1	Control Localization Performance	23	5
		6.4.2	Localization Performance for the Block A Tests	23	5
		6.4.3	Localization Performance for the Block B Tests	23	8
	6.5	Analy	sis of the Lateral and Polar Angles		
		of the	Localization Data	24	4
		6.5.1	Lateral Angle Analysis	24	6
		6.5.2	Polar Angle Analysis	24	8
	6.6	Analv	sis of the Spectral Cues with		
		5	L		
		Respe	ct to the Localization Data	26	5

		6.6.1	Mislocalizations and Spectral Cues	265
		6.6.2	Computing the Correlation between Localization Responses and	
			Spectral Cues	268
		6.6.3	Spatial Distribution of the Cue Similarity Indices	274
		6.6.4	Spatial Distribution of the Cue Similarity Indices for the Covert	
			Spectral Contrast Cue	298
		6.6.5	Statistical Comparison of the Spectral Cues	
			with the Response Directions	298
		6.6.6	Monaural Spectral Shape Cue	314
		6.6.7	Explaining Auditory Localization	
			of Low-Pass Filtered Noise	316
	6.7	Spectr	al Shape and the Covert Peak Area	318
	6.8	Conclu		320
	0.0	Notes	to Chapter 6	321
		110005		021
7	Cont	trasting	g the Spectral Cues	322
	7.1	Overv	iew	322
	7.2	Introd	uction	324
	7.3	VAS a	Ind the ISD Cue	330
	7.4	Metho	ods	332
		7.4.1	Listeners and Localization Paradigm	332
		7.4.2	Measuring Directional Transfer Functions	333
		7.4.3	Estimation of the Interaural Spectrum	333
		7.4.4	The VAS Sound Stimuli	334
		7.4.5	Testing Procedure	339
	7.5	Graph	ical Presentation of Localization Data	339
		7.5.1	Spherical Statistics	339
		7.5.2	Scatter Plots of Localization Data	340
		7.5.3	Circular Statistics	341
	7.6	Result	ïS	342
		7.6.1	Psychophysical Validation of DTFs in VAS	342
		7.6.2	Control Localization Performance	344
		7.6.3	Localization Performance in the	
			Two Test Sound Conditions	345
	7.7	Analy	sis of the Lateral and Polar Angles	
		of the	Localization Data	351
		7.7.1	Lateral Angle Analysis	353
		7.7.2	Polar Angle Analysis	355
	7.8	Analy	sis of the Spectral Cues with	
		respec	t to the Localization Data	357
		7.8.1	Extracting the Spectral Cues	362
		7.8.2	Cue Similarity Indices	363
	7.9	Contra	asting the Monaural and	
		Intera	ural Spectral Cues	364
	7.10	Statist	ical Analysis of the	
		Cue S	imilarity Indices	372
	7.11	Explai	ining the Localization Data for the Left Hemisphere of Space	375

	7.12	Conclusion	381		
		Notes to Chapter 7	384		
8	Cone	clusions	385		
	8.1	A Few Questions and Answers	386		
	8.2	A Broader Context	387		
		8.2.1 Computational Perspective	387		
		8.2.2 Spectral Contrast and Wide Frequency Bands	390		
	8.3	Psychophysical Perspective	399		
	8.4	Neurophysiological Perspective	401		
	8.5	Concluding Remarks	404		
		Notes to Chapter 8	405		
A	Sphe	erical Directionality Plots	406		
	A.1	Directionality Plots	406		
B	Mult	tiscale Spectral Analysis	417		
С	Sphe	erical Thin-Plate Spline	421		
D	D Individualized Virtual Auditory Space				
Bil	Bibliography				

List of Tables

5.1	The command line options used for the auditory image model 176
5.2	Comparison of different models and their spectral resolution 177
5.3	The MLP network
5.4	The TDNN with architecture A
5.5	The TDNN with architecture B
5.6	The TDNN with architecture C
5.7	A comparison of weights and patterns
5.8	Comparison of the localization performance results for the subject and
	the competing models. Fixed and random refer to the type of training 202
5.9	Performance statistics for the restricted high-frequency sound condition 203
6.1	Summary localization statistics for the two control conditions 238
6.2	Summary localization statistics for the bandpass sound conditions. 245
6.3	Linear fit between target and response lateral angles
71	A comparison of free field and VAS localization performance 342
7.1	A comparison of free-field and VAS localization performance
1.2	Summary localization statistics for the two control conditions
7.3	Summary localization statistics for the two test conditions. V. I. and
	V. R. refer to Veridical Interaural and Veridical Right, respectively 355
7.4	Linear fit between target and response lateral angles
7.5	Comparison of the localization performance between the V. I. and V. R. sound
	conditions in the left and right hemispheres of space

List of Figures

1	RoboCraig – a life-like acoustical mannequin
1.1	Physical structure of the auditory sensory apparatus
1.2	Cross-section of the cochlea and the organ of Corti
1.3	Schematic of the basilar membrane
1.4	The auditory sensory system
2.1	Path length difference between the ears
2.2	ITD curves
2.3	Colored ITD surface plot
2.4	Cone of confusion
2.5	Iso-ITD and Iso-ILD contours as a function of spatial location in the
	proximal region of space for an acoustically transparent head 30
2.6	Colored ILD surface plot
3.1	Morphology of the outer ear
3.2	Measured resonance modes of the pinna
3.3	Computed resonance modes of the pinna
3.4	Planar directionality plots
3.5	Spherical directionality plots average across subjects
3.6	Directional excitation patterns
3.7	Primary spectral notch
3.8	More spectral features
3.9	Front-back spectral characteristics
3.10	DTF alignment by frequency scaling
3.11	Iso-notch-frequency contours
3.12	Directional bands
3.13	Narrow-band polar angle plots
3.14	Low-frequency cues and the horizontal plane
3.15	Low-frequency cues and the median plane
3.16	Size of spectral peaks and notches
3.17	Notch and peak detection
3.18	Frequency DLs
3.19	Localization of temporally-different broadband noise
3.20	Explanation of temporal factors
3.21	Spectrally-scrambled noise
3.22	Human localization of spectrally-scrambled noise
3.23	Monaural Localization of Spectrally Scrambled Noise

3.24	Localization performance of the spectral gradient model	93
3.25	Four spectral-feature operators	94
3.26	Localization performance of the feature detection model	95
3.27	Localization performance of a multi-scaled gradient model	96
3.28	Spectral contrast mechanism	103
3.29	Location-level response areas in MGB	104
3.30	Frequency response areas in MGB	106
3.31	Frequency response areas in AI	108
3.32	Spatial distribution of receptive field parameters in A1	109
3.33	Spatial distribution of relative firing rate and onset latency in A1	110
3.34	Auditory cortex	112
<i>A</i> 1	Sound localization environment and tools	125
т.1 Л Э	Localization coordinate system	125
4.2	Erequency response of the loudspeaker and UDTE measurement system	120
4.5	Noise floor of the UDTE recordings	129
4.4	Noise moor of the HKIF recordings	132
4.5		135
4.6	ER-2 earphone calibration curves	136
4./	Attenuation of the primary spectral notch	138
4.8	Circular raw data plot of a response polar angle distribution	145
4.9	Mean response direction calculated as a vector summation	147
4.10	Five circular data distributions with increasing values for the concen-	
	tration parameter	148
4.11	Circular hair plots show the mapping between the response and the	
	target polar angles	150
4.12	Calculation of the Directional Excitation Pattern	152
4.13	Cue visualization toolbox	156
4.14	Four examples of cue directionality plots	157
5.1	Neural system modeling paradigm	171
5.2	Sound localization model	175
5.3	Summing node of a time-delay neuron	178
5.4	Time-delay neural network	179
5.5	Target neural activity pattern	182
5.6	Tonotonic neural architecture	186
5.0	Free-field and VAS localization responses	191
5.8	MI P localization responses	19/
5.0	Localization responses of TDNN with architecture Δ	197
5.10	Localization responses of TDNN with architecture R	108
5.10	Localization responses of TDNN with architecture C	200
5.12	Comparison of the human and the TDNN with architecture C	200
J.12 5 12	Localization for sounds handness filtered 7 627 to 12 264 Hz	201
J.15 5 1 4	Localization for sounds bandnessed 7 (27 to 12 204 Hz.	204
J.14	Sound level and	203
5.15	TDNN with antitation C and accuracy	206
5.10	TDINN WITH AFCHITECTURE C and sound level	207
5.17		208
6.1	Bandwidth and Localization Accuracy	220

6.2	Elevation discrimination and low-pass filtering	222
6.3	Elevation discrimination and high-pass filtering	223
6.4	DEPs and bandpass peaks and bandstop notches	226
6.5	Localization performance data for Control A	236
6.6	Localization performance data for Control B	237
6.7	Localization performance data for the 300 Hz to 5 kHz sound condition	239
6.8	Localization performance data for the 300 Hz to 7 kHz sound condition	240
6.9	Localization performance data for the 300 Hz to 10 kHz sound condition	241
6.10	Localization performance data for the 3 to 8 kHz sound condition	242
6.11	Localization performance data for the 4 to 9 kHz sound condition	243
6.12	Localization performance data for the 7 to 14 kHz sound condition	244
6.13	Scatter plot of the lateral angle data for Control A	247
6.14	Scatter plot of the pooled lateral angle data	249
6.15	Scatter plot of the pooled lateral angle data	250
6.16	Scatter plot of the pooled lateral angle data	251
6.17	Scatter plot of the pooled lateral angle data	252
6.18	Scatter plot of the pooled lateral angle data	253
6.19	Scatter plot of the pooled lateral angle data	254
6.20	Circular hair plot of the polar angle data for Control A	256
6.21	Circular hair plot of the polar angle data for the 300 Hz to 5 kHz sound	
	condition	259
6.22	Circular hair plot of the polar angle data for the 300 Hz to 7 kHz sound	
	condition	260
6.23	Circular hair plot of the polar angle data for the 300 Hz to 10 kHz	
	sound condition	261
6.24	Circular hair plot of the polar angle data for the 3 to 8 kHz sound	
	condition	262
6.25	Circular hair plot of the polar angle data for the 4 to 9 kHz sound	
	condition	263
6.26	Circular hair plot of the polar angle data for the 7 to 14 kHz sound	
	condition	264
6.27	Circular hair plot of the polar angle data for Subject C in 4 sound con-	
	ditions	267
6.28	Directionality plots for the overt and covert spectral cues for the 300 Hz	
	to 5 kHz sound condition for Subject A	277
6.29	Directionality plots for the overt and covert spectral cues for the 300 Hz	
	to 5 kHz sound condition for Subject B	278
6.30	Directionality plots for the overt and covert spectral cues for the 3 to	
	8 kHz sound condition for Subject C	280
6.31	Directionality plots for the overt and covert spectral cues for the 3 to	
	8 kHz sound condition for Subject B	282
6.32	Directionality plots for the overt and covert spectral cues for the 4 to	
	9 kHz sound condition for Subject D	284
6.33	Directionality plots for the overt and covert spectral cues for the 4 to	•
<i>.</i>	9 kHz sound condition for Subject C	286
6.34	Directionality plots for the overt and covert spectral cues for the 7 to	• • • •
	14 kHz sound condition for Subject B	288

6.35	Directionality plots for the overt and covert spectral cues for the 7 to	
	14 kHz sound condition for Subject D	289
6.36	Directionality plots for the overt and covert spectral cues for the 300 Hz	
	to 5 kHz sound condition for Subject B	292
6.37	Directionality plots for the overt and covert spectral cues for the 3 to	
	8 kHz sound condition for Subject C	293
6.38	Directionality plots for the overt and covert spectral cues for the 4 to	
	9 kHz sound condition for Subject B	295
6.39	Directionality plots for the overt and covert spectral cues for the 7 to	
	14 kHz sound condition for Subject C	297
6.40	Directionality plots of the covert spectral contrast area	299
6.41	Bar plots show the percentage of responses accounted for by the overt	
	and covert spectral cues in the 300 Hz to 5 kHz sound condition	302
6.42	Bar plots show the percentage of responses accounted for by the overt	
	and covert spectral cues in the 3 to 8 kHz sound condition	306
6.43	Bar plots show the percentage of responses accounted for by the overt	
	and covert spectral cues in the 4 to 9 kHz sound condition	308
6.44	Bar plots show the percentage of responses accounted for by the overt	
	and covert spectral cues in the 7 to 14 kHz sound condition	310
6.45	Directionality plots of the insilateral covert notch area	312
6.46	Bar plots show the percentage of responses accounted for by the monau-	012
00	ral and interaural spectral shape cues in four sound conditions: 300 Hz	
	to 5 kHz. 3 to 8 kHz. 4 to 9 kHz. 7 to 14 kHz.	315
		010
6.47	Spatial distribution of the covert spectral cues for a series of low-passed	
6.47	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli	318
6.47	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli	318
6.47 7.1	Spatial distribution of the covert spectral cues for a series of low-passednoise stimuliComparison of interaural spectrum for the Control and V. I. sound con-	318
6.47 7.1	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli Comparison of interaural spectrum for the Control and V. I. sound condition	318 338
6.477.17.2	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli Comparison of interaural spectrum for the Control and V. I. sound condition Free-field versus VAS performance data	318 338 344
6.477.17.27.3	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli	318 338 344 346
 6.47 7.1 7.2 7.3 7.4 	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli	318 338 344 346 348
 6.47 7.1 7.2 7.3 7.4 7.5 	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli	318 338 344 346 348 349
 6.47 7.1 7.2 7.3 7.4 7.5 7.6 	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli	318 338 344 346 348 349 350
 6.47 7.1 7.2 7.3 7.4 7.5 7.6 7.7 	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuliComparison of interaural spectrum for the Control and V. I. sound con- ditionGenerationGenerationFree-field versus VAS performance dataControl localization performance data for Subject DControl B localization performance dataControl B localization performance data for the Veridical Interaural conditionLocalization performance data for the Veridical Right conditionScatter plot of front-back and elevation angles (Subject A)	318 338 344 346 348 349 350 351
 6.47 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuliComparison of interaural spectrum for the Control and V. I. sound con- ditionGomparison of interaural spectrum for the Control and V. I. sound con- ditionFree-field versus VAS performance dataControl localization performance data for Subject DControl B localization performance dataLocalization performance data for the Veridical Interaural conditionLocalization performance data for the Veridical Right conditionScatter plot of front-back and elevation angles (Subject A)Scatter plot of front-back and elevation angles (Subject B)	318 338 344 346 348 349 350 351 352
 6.47 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuliComparison of interaural spectrum for the Control and V. I. sound con- ditionditionFree-field versus VAS performance dataControl localization performance data for Subject DControl B localization performance dataLocalization performance data for the Veridical Interaural conditionLocalization performance data for the Veridical Right conditionScatter plot of front-back and elevation angles (Subject A)Scatter plot of front-back and elevation angles (Subject C)Scatter plot of front-back and elevation angles (Subject C)	318 338 344 346 348 349 350 351 352 353
 6.47 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuliComparison of interaural spectrum for the Control and V. I. sound con- ditionGenerationFree-field versus VAS performance dataControl localization performance data for Subject DControl B localization performance dataLocalization performance data for the Veridical Interaural conditionLocalization performance data for the Veridical Right conditionScatter plot of front-back and elevation angles (Subject A)Scatter plot of front-back and elevation angles (Subject C)Scatter plot of front-back and elevation angles (Subject C)Scatter plot of front-back and elevation angles (Subject D)	318 338 344 346 348 349 350 351 352 353 354
 6.47 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 	Spatial distribution of the covert spectral cues for a series of low-passednoise stimuliComparison of interaural spectrum for the Control and V. I. sound conditionditionFree-field versus VAS performance dataControl localization performance data for Subject DControl B localization performance dataLocalization performance data for the Veridical Interaural conditionLocalization performance data for the Veridical Right conditionScatter plot of front-back and elevation angles (Subject A)Scatter plot of front-back and elevation angles (Subject C)Scatter plot of front-back and elevation angles (Subject D)Scatter plot of the pooled lateral angle data	318 338 344 346 348 349 350 351 352 353 354 356
 6.47 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 	Spatial distribution of the covert spectral cues for a series of low-passednoise stimuliComparison of interaural spectrum for the Control and V. I. sound conditionditionFree-field versus VAS performance dataControl localization performance data for Subject DControl B localization performance dataLocalization performance data for the Veridical Interaural conditionLocalization performance data for the Veridical Right conditionScatter plot of front-back and elevation angles (Subject A)Scatter plot of front-back and elevation angles (Subject C)Scatter plot of front-back and elevation angles (Subject C)Scatter plot of the pooled lateral angle dataCircular hair plot of the polar angle data for the Control sound condition	318 338 344 346 348 349 350 351 352 353 354 356 n 358
 6.47 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli	318 338 344 346 348 349 350 351 352 353 354 356 358 360
 6.47 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli	318 338 344 346 348 349 350 351 352 353 354 356 n 358 360 361
 6.47 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.15 	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli	318 338 344 346 348 349 350 351 352 353 354 356 358 360 361
 6.47 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.15 	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli	318 338 344 346 348 349 350 351 352 353 354 356 356 358 360 361 365
 6.47 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.15 7.16 	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli	318 338 344 346 348 349 350 351 352 353 354 356 a 358 360 361 365
 6.47 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.15 7.16 	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli	318 338 344 346 348 349 350 351 352 353 354 356 356 360 361 365 366
 6.47 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.13 7.14 7.15 7.16 7.17 	Spatial distribution of the covert spectral cues for a series of low-passed noise stimuli	318 338 344 346 348 349 350 351 352 353 354 356 356 360 361 365 365

Cue directionality plots of the monaural spectral cues and the ISD cue	
for the Control sound condition and target location $(-134^{\circ}, 20^{\circ})$ 3	68
Cue directionality plots of the monaural spectral cues and the ISD cue	
for the Control sound condition and target location $(-134^\circ, -20^\circ)$ 3	69
Cue directionality plots of the monaural spectral cues and the ISD cue	
for the Control sound condition and target location $(0^{\circ}, 0^{\circ})$	70
Cue directionality plots of the monaural spectral cues and the ISD cue	
for the Control sound condition and target location $(180^\circ, 0^\circ)$ 3	71
Bar plots show the percentage of responses accounted for by the monau-	
ral and interaural spectral shape cues in 3 sound conditions: Control	
sound condition, V. I. sound condition, V. R. sound condition 3	73
Bar plots show the percentage of responses accounted for by the monau-	
ral and interaural spectral shape cues in the free-field sound condition . 3	74
Cue directionality plots of the monaural spectral cue for the left ear for	
the V. I. and V. R. sound condition	76
Cue directionality plots of the monaural spectral cue for the left ear	
combined with the ISD cue for the V. I. and V. R. sound condition 3	77
Average DEP for the response directions in the left hemisphere of space 3	79
Cue directionality plots of the covert peak area for the left ear for the	
V. I. and V. R. sound condition	81
Cue directionality plots of the covert peak area for the left ear com-	
bined with the ISD cue for the V. I. and V. R. sound condition 3	82
Directional excitation patterns for flat-spectrum and spectrally-scrambled	
broadband noise	92
Cue directionality plots of the spectral contrast areas for several fre-	
quency bands for the flat-spectrum broadband noise	93
Cue directionality plots of the spectral contrast areas for several fre-	
quency bands for the spectrally-scrambled broadband noise 3	94
Directional excitation patterns for a broadband and bandpass filtered	
broadband noise	96
Cue directionality plots of the spectral contrast areas for several fre-	
quency bands for the bandpass filtered broadband noise	97
Distribution of center frequency in the lateral belt area	98
Spherical directionality plots	08
	Cue directionality plots of the monaural spectral cues and the ISD cue for the Control sound condition and target location $(-134^\circ, 20^\circ)$ 3 Cue directionality plots of the monaural spectral cues and the ISD cue for the Control sound condition and target location $(-134^\circ, -20^\circ)$ 3 Cue directionality plots of the monaural spectral cues and the ISD cue for the Control sound condition and target location $(0^\circ, 0^\circ)$ 3 Cue directionality plots of the monaural spectral cues and the ISD cue for the Control sound condition and target location $(180^\circ, 0^\circ)$ 3 Bar plots show the percentage of responses accounted for by the monau- ral and interaural spectral shape cues in 3 sound condition 3 Bar plots show the percentage of responses accounted for by the monau- ral and interaural spectral shape cues in the free-field sound condition 3 Bar plots show the percentage of responses accounted for by the monau- ral and interaural spectral shape cues in the free-field sound condition 3 Cue directionality plots of the monaural spectral cue for the left ear for the V. I. and V. R. sound condition 3 Cue directionality plots of the monaural spectral cue for the left ear combined with the ISD cue for the V. I. and V. R. sound condition

Glossary

- A1: A1 refers to primary auditory cortex.
- **AIM:** AIM refers to the Auditory Image Model (Patterson and Allerhand, 1995; Giguère and Woodland, 1994) which simulates the spectro-temporal characteristics of peripheral auditory processing.
- ANTERIOR: Anterior refers to the region in front.
- **AUDIO-VISUAL HORIZON:** The audio-visual horizon refers to the horizontal plane containing the interaural axis between the two ears.
- **CONTRALATERAL:** Contralateral refers to the opposite side.
- **CF:** Characteristic frequency refers to the best response frequency of a neuron.
- **CIRCULAR HAIR PLOT:** A circular hair plot is a graphical plot used for showing the mapping between two circular variables. In this plot, a circle is drawn with "hair lines". One end of the hair line segment touches the circle and its position on the circle indicates the value of one of the circular variables. The other end of the hair line segment points in the direction that maps or corresponds to the other circular variable.
- **CM:** CM refers to the caudalmedial area adjacent to the primary auditory cortex.
- **CPA:** The covert peak area for a given frequency refers to the location in space which has maximum gain for that frequency relative to all other locations. Importantly, this location does not have to be the same as the location(s) with a local peak in the sound spectrum or excitation pattern at that frequency.
- **CRITICAL BAND:** The critical band is a frequency band that is approximately 15% of a frequency band's center frequency. Psychophysical data indicate that the auditory system seems to analyze spectral information within a critical band differently from that outside of a critical band. For a further discussion see endnote 17 for Chapter 3.
- **CUE CORRELATION VALUE:** A cue correlation value refers to numerical measure of the similarity between two auditory localization cues.

- **CUE SIMILARITY INDEX:** A cue similarity index refers to a cue correlation value that has been normalized by subtracting the mean cue correlation value across space and dividing by the standard deviation.
- **DIOTIC:** Diotic refers to a listening condition in which the same sound stimuli are presented to each ear.
- **DICHOTIC:** Dichotic refers to a listening condition in which the different sound stimuli are presented to each ear.
- **CUE DIRECTIONALITY PLOTS:** Cue directionality plots refer to a graphical presentation that indicates which directions in space best correlate with a given acoustic cue. Generally, the brighter or lighter the color, the better the direction matches the given acoustic cue.
- **DEP:** DEP refers to the directional excitation pattern which is the excitation pattern for a flat-spectrum broadband sound originating from a specific direction in space. It is generally computed by filtering a Gaussian white noise with a DTF filter and then passing the directional sound through a cochlear model.
- **DTF:** A DTF refers to an HRTF that has had the RMS of the HRTFs across all locations deconvolved from it.
- **ER-2:** The ER-2 is an earphone manufactured by Etymotic Research which is designed to have a flat frequency transfer function to the human eardrum. This earphone was used for all VAS experiments and it is shown in Figure 4.5.
- **EXCITATION PATTERN:** An excitation pattern refers to a pattern of neural excitation within the auditory nerve. It is generally computed using a cochlear model.
- **EXTRAPERSONAL SPACE:** Extrapersonal space relates to the image of objects outside of the body.
- **FREQUENCY DIVISION:** Frequency division refers to the progressive integration of acoustic information across frequency as computational processing proceeds from the input layers to the output layers of a neural network model.
- **HRTF:** The head-related transfer function refers to the acoustic frequency response of the external auditory periphery. It is a complex-valued frequency spectrum composed of the magnitude and phase spectrums that mathematically describe the acoustical filtering properties of the external auditory periphery. The magnitude spectrum describes the the acoustic gain or attenuation of the external auditory periphery as a function of frequency and varies with spatial location.
- **IPSILATERAL:** Ipsilateral refers to the same side.
- **ITD:** The interaural time difference cue refers to the time delay between the signal at the two ears.

xviii Glossary

- **IID:** The interaural intensity difference cue refers to the intensity differences between the signal at the two ears.
- **ILD:** The interaural level difference cue refers to the overall difference in signal intensity at the two ears averaged across frequency.
- **ISD:** The interaural spectral difference cue refers to the difference in the intensity patterns across frequency for the two ears.
- **JND:** The just-noticeable difference refers to the smallest quantum of change in a psychophysical variable that is perceptually detectable.
- **LATERAL ANGLE:** The lateral angle indicates the laterality of a spatial position in the double-pole or lateral-polar angle coordinate system. Consider the common spherical coordinate system with the Z-axis pointing up. The lateral-polar angle coordinate system is then formed by simply rotating the spherical coordinate system so that the Z-axis is now aligned with the old Y-axis. In the auditory localization literature, the Z-axis of the lateral-polar angle coordinate system is usually aligned with the listener's interaural axis (see Figure 4.2). Let θ be the angle with respect to the Z-axis and let ϕ be the polar angle in the XY-plane. The angle θ is then the lateral angle in the double-pole or lateral-polar angle coordinate system.
- MEDIAN PLANE: The median plane is the same as the midsagittal plane.
- **MIDSAGITTAL PLANE:** The midsagittal plane or median plane is the vertical plane perpendicular to the interaural axis that divides the body into two approximately bilaterally symmetric halves.
- **MSO:** The Medial Superior Olive is part of the Superior Olivary Complex (SOC). The nucleus receives binaural input and is generally associated with interaural phase differences.
- **NORMALIZED ENERGY LEVEL:** A normalized energy level refers to the energy in a given frequency band that has been normalized with respect to the energy level in its adjacent side bands.
- **OCTAVE:** An octave refers to a frequency interval corresponding to a doubling of frequency.
- **PINNA:** The pinna refers to the external ear.
- **POLAR ANGLE:** The polar angle refers to a component angle of the double-pole or lateral-polar angle coordinate system that is frequently used to indicate a direction in space. Consider the common spherical coordinate system with the Z-axis pointing up. The lateral-polar angle coordinate system is then formed by simply rotating the spherical coordinate system so that the Z-axis is now aligned with the

old Y-axis. In the auditory localization literature, the Z-axis of the lateral-polar angle coordinate system is usually aligned with the listener's interaural axis (see Figure 4.2). The polar angle indicates the angle around the interaural axis. Let θ be the angle with respect to the Z-axis and let ϕ be the angle in the XY-plane. The angle ϕ is then the polar angle in the double-pole or lateral-polar angle coordinate system.

- **POSTERIOR:** Posterior refers to the region in back.
- **QUADRATURE LOCALIZATION PLOT:** A quadrature localization plot refers to a set of 4 spherical localization plots showing auditory localization data from 4 points of view: front, back, left and right.
- **R:** R refers to the rostral area adjacent to the primary auditory cortex.
- **SCD:** The deep layers of the Superior Colliculus refers to a nucleus in the auditory midbrain that has been shown to contain a topographic map of space.
- **SPECTRAL CONTRAST AREA:** The spectral contrast area refers to the the region of space which has a maximum normalized energy level for a given frequency band relative to all other locations in space.
- TDNN: TDNN refers to a time-delay neural network.
- **TONOTOPIC:** Tonotopic refers to an ordered arrangement by frequency value.
- **VAS:** Virtual auditory space refers to the electronic synthesis of spatial hearing using head-related transfer functions.

Preface

We cannot be absolutely sure, since one cannot ever explain inductive reasoning – one cannot ever explain how to proceed, when one knows only a little, in order to learn even more (Feynman, 1995).

0.1 Auditory Perception

Things change and the way they do so are governed by physical laws. Physical laws, it is thought, do not change. Science is the study of the physical world and its laws. Within the last five years, I have been studying the human perception of auditory space. Why perception? It is clear that in generating perceptions the brain is solving computational problems related to the physical world. However, the study of computation itself is relatively new. In the past, man did not make things to perform complex calculations. Now, everyday, microprocessors are getting clocked faster and faster, but do man-made things really perform complex calculations? Complexity involves patterns: the formation of dunes in the sand, the distribution of petals on a flower, acoustic patterns in fluent speech. You and I perceive these patterns and from them can make complex predictions about the changes in the environment around us. We do not understand how this happens, nor for that matter the mathematical rules that govern pattern formation. With just two ears and some pattern analysis, our auditory system can often determine the direction of a transient sound. However, it is not locating a sound that directly interests us, for we can do that easily enough with four microphones (i.e., six pairs of "ears") using a method of mathematical triangulation. Rather, it is the auditory system's ability to detect the spectral shape information related to the acoustic filtering properties of our external ear *despite* the fact that the sound may be spectrally-scrambled ± 20 dB in level in 1/3-octave bands and presented concurrently with competing sound sources in a reverberant acoustic environment that teaches us respect for the biology.

We desire so much to make things that perform complex computations that in this last decade, the "Decade of the Brain," brain scientists have been writing books that tell us "How the Mind Works" and engineers have been claiming they are trying to be inspired by biology. It seems that scientists have been swept away by their ability to explain almost anything at all about the brain. I do not mean this disrespectfully and modern medicine can definitely perturb the homeodynamic regulation of the human brain in helpful ways. But I do not even know what a perception is or what it means to feel and experience it. People say we are "conscious", but I do not know what that means. It is not clear to me whether "consciousness" is a key ingredient for complex computations. Perhaps it is only required for complex computations about the self, perhaps not. When studying auditory sensory perception, I have mostly aimed my questions at issues that remain close to the sensory input when trying to learn something about the complex signal processing occurring within the human brain.

In addition to complex brain processing, there is another rather obvious aspect to the study of the human auditory perception of space: 3-D audio. We are not yet technically able to record 3-D sound and reproduce it for *any* listener with a reasonable degree of fidelity. Reproducing 3-D audio for only one person, however, is simple because we only have to put a microphone in each of his/her ears and record the sound. If you believe that surround sound or ambisonic sound has accomplished the recording and playback of high-fidelity 3-D audio, our standards probably differ. The study of the human auditory perception of space will provide us with a better understanding of the technical requirements for efficiently reproducing 3-D audio for human listeners.

0.2 A Personal Statement

In the course of doing my degree, I have become convinced that I am suffering from a "neglect syndrome." In doing my research, I have found that no matter how hard I work, I cannot really see past the end of my nose. Most of us go around comfortable that we are intelligent creatures, but put it to the test and try to understand something fundamentally new and we often flounder. To show this, I will summarize my entire dissertation in a single sentence: A spectral contrast model based on overlapping frequency bands of varying bandwidth and perhaps multiple frequency scales can provide a reasonable algorithm for explaining much of the current psychophysical and neurophysiological data related to human auditory localization. If I could have made this observation in the beginning, I could have saved five years' time. It is curious what sometimes gives people depth of insight. I am reminded of Ramachandran and Blakeslee's (1998) comment that for most of us it is difficult to come up with several metaphors for "overdoing things," and that Shakespeare came up with: "To gild refined gold, to paint the lily, to throw perfume on the violet, to smooth the ice, or add another hue to the rainbow ... is wasteful and ridiculous excess." I could, of course, add my thesis to that list. I believe that as we peer out at the world we rarely, if ever, see what is actually before us.

Some say that obtaining a Ph.D. is like getting a driver's license. For me, admittedly an American in my educational upbringing, this makes it all the more remarkable that at the University of Sydney there is no viva voce. In other words, there is no direct examination of the individual behind the work. It is like awarding a driver's license on the basis of watching a video tape. It is ironic that this is the attitude of an institute of higher learning that teaches *first-hand*, empirical observation is the basis for all scientific understanding and knowledge.

I would also like to say that I have recently come to the opinion that within the last five years I have successfully completed *two* projects, not one, but that this dissertation

is only concerned with only one of them. Nonetheless, in this preface I would like to describe my "other" project because it has played a significant role in my trials and tribulations over the last five years and I also believe it is a significant accomplishment.

What should really be considered as my first project was concerned with the problem of customizing acoustic transfer functions, known as head-related transfer functions (HRTFs), for individual listeners. That is to say, the human external auditory periphery is a directional acoustic filter whose filtering properties vary from one listener to another. It turns out that human auditory localization performance is sensitive to the individual differences in these filtering properties (I later quantified the extent to which this is true). Therefore each listener requires his/her own set of acoustic transfer functions in order to be able to synthesize a realistic virtual auditory space, i.e., high-fidelity 3-D audio over earphones, for that listener. Acoustically recording these acoustic transfer functions is expensive both in time and equipment. Therefore, the goal of my first project was to create a simple method for generating HRTFs that does not require acoustical measurements to be made in the laboratory.

In the midst of my first project, my thesis advisor, Philip Leong, moved to the Chinese University in Hong Kong. For better or worse, however, I was committed to remaining at the University of Sydney and was mostly supervised by Simon Carlile on a second and new project which involved trying to understand, as best as possible, the spectral analysis involved in human auditory localization. Nonetheless, I believe that to a large degree, I have actually completed both projects.

As my first step in the project with Philip, I developed numerical solutions to the acoustic wave equation for circular and elliptical disks and then for a prolate spheroid. It became clear that solving the acoustic wave equation in a realistic manner for the human external auditory periphery would require a sophisticated mathematical software package, such as a Boundary Element Method package, and an imaging technique for recording the shape of the human external auditory periphery. As these resources were

not available, I moved away from a direct simulation of the acoustic wave equation in search of a more practical solution.

As a second step in this line of research, I built a life-like acoustical mannequin of myself (see Figure 1) and recorded the differences in the acoustical transfer functions with and without the torso. With the help of an honour student, a lighter and more durable cast of the head was then created in which the ears could be rotated to change the angle of the external ear with respect to the side of the head. The acoustic transfer functions of the mannequin were then recorded for 7 different angles of the ear with respect to the head. Using a directional averaging technique for implementing principle component analysis, I numerically modeled the functional dependence of the HRTFs on the "ear angle."

Figure 1: A life-like acoustical mannequin was made.

The reasonable degree of success with the numerical modeling (Carlile, Jin and Harvey, 1998) described above led to the creation of a database of 11 sets of HRTFs for 11 different individuals. Using this database, an HRTF morphing model was created in which 7 parameters (PCA weights) could be tuned to produce a complete set of HRTFs. The 7 parameters were tuned manually in response to how well the listener

could localize a set of test sounds. Tuning these parameters was difficult and resulted in auditory localization performance that was still significantly worse than control performance levels.

The above model was then improved in two ways: (1) a better PCA approximation method was used, and (2) a new database of HRTFs was created using an *identical* recording technique for 36 different human subjects. The new HRTF morphing model provided a generative statistical technique to compress or smooth (in a lossy fashion) the HRTFs for each of the 36 human subjects. An auditory localization experiment with 5 human subjects was then carried out to determine how many PCA weights were required for high-fidelity auditory localization. Following this, a measurement process was developed for physically measuring the Cartesian coordinates of 20 morphological landmarks defining the shape of the listener's external auditory periphery. A bite bar was made and a 3-D stylus pen was set up for recording the coordinates of the morphological landmarks. Multivariable linear regression analysis was then successfully used to develop a functional mapping between the morphology of the external auditory periphery and the HRTFs (see Jin, Leong, Leung, Corderoy and Carlile, 2000). It turns out that approximately 68% of the morphological differences in individual ear shape are significant for high-fidelity VAS. This work has resulted in 2 refereed conference papers (those cited above) and a provisional patent application for the University of Sydney.

0.3 Reading the Dissertation

Chapters 1, 2 and 3 provide a fairly extensive background review related to human auditory localization. These chapters can be read on their own. Chapter 4 describes the experimental methods that have been used. Chapters 5, 6, and 7 describe the three phases of my research and each chapter can be read on its own. Chapter 5 describes a time-delay neural network model of human auditory localization; Chapter 6 describes a psychoacoustical experiment investigating human sound localization of bandpass filtered noise stimuli; Chapter 7 describes a psychoacoustical experiment that employs the techniques of virtual auditory space to probe the relative contribution of the monaural and interaural spectral cues. Chapter 8 provides a summary of the research and the conclusions that can be derived from it. It can be read both first and last as it provides a quick overview of the focus of the work described in this dissertation.