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Abstract

This dissertation provides an overview of my research over the last five years into the
spectral analysis involved in human sound localization. The work involved conducting
psychophysical tests of human auditory localization performance and then applying
analytical techniques to analyze and explain the data. It is a fundamental thesis of this
work that human auditory localization response directions are primarily driven by the
auditory localization cues associated with the acoustic filtering properties of the external
auditory periphery, i.e., the head, torso, shoulder, neck, and external ears. This work
can be considered as composed of three parts.

In the first part of this work, | compared the auditory localization performance of
a human subject and atime-delay neural network model under three sound conditions:
broadband, high-pass, and low-pass. A “black-box” modeling paradigm was applied.
The modeling results indicated that training the network to localize sounds of varying
center-frequency and bandwidth could degrade localization performance results in a
manner demonstrating some similarity to human auditory localization performance.

Asthe data collected during the network modeling showed that humans demonstrate
striking localization errors when tested using bandlimited sound stimuli, the second part
of this work focused on human sound localization of bandpass filtered noise stimuli.
Localization data was collected from 5 subjects and for 7 sound conditions: 300 Hz to
5kHz, 300 Hzto 7 kHz, 300 Hz to 10 kHz, 300 Hz to 14 kHz, 3to 8 kHz, 4to 9 kHz, and
7 to 14 kHz. The localization results were analyzed using the method of cue similarity
indices developed by Middlebrooks (1992). The data indicated that the energy level in
relatively wide frequency bands could be driving the localization response directions,
just asin Butler's covert peak area model (see Butler and Musicant, 1993).

The question wasthen raised asto whether the energy levelsin the variousfrequency
bands, as described above, are most likely analyzed by the human auditory localization



system on amonaural or aninteraural basis. Inthethird part of thiswork, an experiment
was conducted using virtual auditory space sound stimuli in which the monaural spec-
tral cues for auditory localization were disrupted, but the interaural spectral difference
cue was preserved. The results from this work showed that the human auditory local-
ization system relies primarily on amonaural analysis of spectral shape information for
its discrimination of directions on the cone of confusion.

The work described in the three parts lead to the suggestion that a spectral contrast
model based on overlapping frequency bands of varying bandwidth and perhaps mul-
tiple frequency scales can provide a reasonable algorithm for explaining much of the
current psychophysical and neurophysiological data related to human auditory localiza-
tion.
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Glossary

Al: Alrefersto primary auditory cortex.

AIM: AIM refers to the Auditory Image Model (Patterson and Allerhand, 1995;
Giguere and Woodland, 1994) which simulates the spectro-temporal characteris-
tics of peripheral auditory processing.

ANTERIOR: Anterior refersto the region in front.

AUDIO-VISUAL HORIZON: The audio-visual horizon refers to the horizontal
plane containing the interaural axis between the two ears.

CONTRALATERAL: Contralateral refers to the opposite side.
CF: Characteristic frequency refers to the best response frequency of a neuron.

CIRCULAR HAIR PLOT: A circular hair plot is agraphical plot used for show-
ing the mapping between two circular variables. In this plot, a circle is drawn
with “hair lines’. One end of the hair line segment touches the circle and its po-
sition on the circle indicates the value of one of the circular variables. The other
end of the hair line segment points in the direction that maps or corresponds to
the other circular variable.

CM: CM refersto the caudalmedial area adjacent to the primary auditory cortex.

CPA: The covert peak area for a given frequency refers to the location in space
which has maximum gain for that frequency relative to al other locations. Im-
portantly, thislocation does not have to be the same as the location(s) with alocal
peak in the sound spectrum or excitation pattern at that frequency.

CRITICAL BAND: The critical band is a frequency band that is approximately
15% of a frequency band’s center frequency. Psychophysical data indicate that
the auditory system seems to analyze spectral information within a critical band
differently from that outside of a critical band. For afurther discussion see end-
note 17 for Chapter 3.

CUE CORRELATION VALUE: A cuecorrelation valuerefersto numerical mea-
sure of the similarity between two auditory localization cues.
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CUE SIMILARITY INDEX: A cue similarity index refers to a cue correlation
value that has been normalized by subtracting the mean cue correlation value
across space and dividing by the standard deviation.

DIOTIC: Dioticrefersto alistening condition in which the same sound stimuli are
presented to each ear.

DICHOTIC: Dichotic refers to alistening condition in which the different sound
stimuli are presented to each ear.

CUE DIRECTIONALITY PLOTS: Cue directionality plots refer to a graphical
presentation that indicates which directions in space best correlate with a given
acoustic cue. Generaly, the brighter or lighter the color, the better the direction
matches the given acoustic cue.

DEP: DEP refersto the directional excitation pattern which isthe excitation pattern
for aflat-spectrum broadband sound originating from a specific direction in space.
It isgenerally computed by filtering a Gaussian white noise with a DTF filter and
then passing the directional sound through a cochlear model.

DTF: A DTF refers to an HRTF that has had the RMS of the HRTFs across all
locations deconvolved from it.

ER-2: The ER-2 is an earphone manufactured by Etymoatic Research which is de-
signed to have a flat frequency transfer function to the human eardrum. This
earphone was used for all VAS experimentsand it is shown in Figure 4.5.

EXCITATION PATTERN: An excitation pattern refersto apattern of neural exci-
tation within the auditory nerve. It isgenerally computed using a cochlear model.

EXTRAPERSONAL SPACE: Extrapersonal space relates to the image of objects
outside of the body.

FREQUENCY DIVISION: Frequency division refers to the progressive integra-
tion of acoustic information across frequency as computational processing pro-
ceeds from the input layers to the output layers of aneural network model.

HRTF: Thehead-related transfer function refersto the acoustic frequency response
of the external auditory periphery. It is a complex-valued frequency spectrum
composed of the magnitude and phase spectrumsthat mathematically describe the
acoustical filtering properties of the external auditory periphery. The magnitude
spectrum describes the the acoustic gain or attenuation of the external auditory
periphery as a function of frequency and varies with spatial location.

IPSILATERAL: Ipsilateral refersto the same side.

ITD: Theinteraura time difference cue refers to the time delay between the signal
at thetwo ears.
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[ID: The interaura intensity difference cue refers to the intensity differences be-
tween the signal at the two ears.

ILD: The interaural level difference cue refers to the overall difference in signal
intensity at the two ears averaged across frequency.

ISD: The interaural spectral difference cue refers to the difference in the intensity
patterns across frequency for the two ears.

JND: The just-noticeable difference refers to the smallest quantum of changein a
psychophysical variable that is perceptually detectable.

LATERAL ANGLE: Thelatera angleindicatesthe laterality of a spatial position
in the double-pole or lateral-polar angle coordinate system. Consider the com-
mon spherical coordinate system with the Z-axis pointing up. The lateral-polar
angle coordinate system is then formed by simply rotating the spherical coordi-
nate system so that the Z-axisis now aligned with the old Y-axis. In the auditory
localization literature, the Z-axis of the lateral-polar angle coordinate system is
usually aligned with the listener’s interaural axis (see Figure 4.2). Let 6 be the
angle with respect to the Z-axis and let ¢ be the polar anglein the XY-plane. The
angle 4 is then the lateral angle in the double-pole or lateral-polar angle coordi-
nate system.

MEDIAN PLANE: The median plane isthe same as the midsagittal plane.

MIDSAGITTAL PLANE: The midsagittal plane or median plane is the vertica
plane perpendicular to the interaural axis that divides the body into two approxi-
mately bilaterally symmetric halves.

MSO: The Media Superior Oliveis part of the Superior Olivary Complex (SOC).
The nucleus receives binaura input and is generally associated with interaural
phase differences.

NORMALIZED ENERGY LEVEL: A normalized energy level refers to the en-
ergy inagiven frequency band that has been normalized with respect to the energy
level in its adjacent side bands.

OCTAVE: An octaverefersto afrequency interval corresponding to a doubling of
frequency.

PINNA: The pinnarefersto the external ear.

POLAR ANGLE: The polar angle refersto acomponent angle of the double-pole
or lateral-polar angle coordinate system that isfrequently used to indicate adirec-
tion in space. Consider the common spherical coordinate system with the Z-axis
pointing up. The lateral-polar angle coordinate system is then formed by simply
rotating the spherical coordinate system so that the Z-axisis now aligned with the
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old Y-axis. In the auditory localization literature, the Z-axis of the lateral-polar
angle coordinate system is usually aligned with the listener’s interaural axis (see
Figure 4.2). The polar angle indicates the angle around the interaural axis. Let ¢
be the angle with respect to the Z-axisand let ¢ bethe anglein the XY-plane. The
angle ¢ isthen the polar angle in the double-pole or lateral-polar angle coordinate
system.

POSTERIOR: Posterior refersto the region in back.

QUADRATURE LOCALIZATION PLOT: A quadrature localization plot refers
to a set of 4 spherical localization plots showing auditory localization data from
4 points of view: front, back, left and right.

R: Rrefersto therostral area adjacent to the primary auditory cortex.

SCD: The deep layers of the Superior Colliculusrefersto anucleusin the auditory
midbrain that has been shown to contain a topographic map of space.

SPECTRAL CONTRAST AREA: The spectra contrast area refers to the the re-
gion of space which has a maximum normalized energy level for a given fre-
guency band relative to al other locations in space.

TDNN: TDNN refersto atime-delay neural network.

TONOTOPIC: Tonotopic refers to an ordered arrangement by frequency value.

VAS: Virtual auditory space refers to the electronic synthesis of spatial hearing
using head-related transfer functions.
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Preface

We cannot be absolutely sure, since one cannot ever explain inductive reasoning —
one cannot ever explain how to proceed, when one knows only alittle, in order
to learn even more (Feynman, 1995).

0.1 Auditory Perception

Things change and the way they do so are governed by physical laws. Physical laws,
it is thought, do not change. Science is the study of the physical world and its laws.
Within the last five years, | have been studying the human perception of auditory space.
Why perception? It is clear that in generating perceptions the brain is solving computa-
tional problemsrelated to the physical world. However, the study of computation itself
isrelatively new. In the past, man did not make thingsto perform complex calculations.
Now, everyday, microprocessors are getting clocked faster and faster, but do man-made
things really perform complex calculations? Complexity involves patterns: the forma-
tion of dunesin the sand, the distribution of petals on aflower, acoustic patternsin fluent
speech. You and | perceive these patterns and from them can make complex predictions
about the changes in the environment around us. We do not understand how this hap-
pens, nor for that matter the mathematical rules that govern pattern formation. With
just two ears and some pattern analysis, our auditory system can often determine the
direction of atransient sound. However, it is not locating a sound that directly interests
us, for we can do that easily enough with four microphones (i.e., six pairs of “ears’)
using a method of mathematical triangulation. Rather, it isthe auditory system’s ability

to detect the spectral shape information related to the acoustic filtering properties of
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our external ear despite the fact that the sound may be spectrally-scrambled +-20 dB in
level in 1/3-octave bands and presented concurrently with competing sound sources in
areverberant acoustic environment that teaches us respect for the biology.

We desire so much to make things that perform complex computations that in this
last decade, the “Decade of the Brain,” brain scientists have been writing books that
tell us “How the Mind Works’ and engineers have been claiming they are trying to be
inspired by biology. It seems that scientists have been swept away by their ability to
explain aimost anything at all about the brain. 1 do not mean this disrespectfully and
modern medicine can definitely perturb the homeodynamic regulation of the human
brain in helpful ways. But | do not even know what a perception is or what it means
to feel and experience it. People say we are “conscious’, but | do not know what that
means. It is not clear to me whether “consciousness’ is a key ingredient for complex
computations. Perhaps it is only required for complex computations about the self,
perhaps not. When studying auditory sensory perception, | have mostly aimed my
questions at issuesthat remain close to the sensory input when trying to learn something
about the complex signal processing occurring within the human brain.

In addition to complex brain processing, there isanother rather obvious aspect to the
study of the human auditory perception of space: 3-D audio. We are not yet technically
able to record 3-D sound and reproduce it for any listener with a reasonable degree of
fidelity. Reproducing 3-D audio for only one person, however, is smple because we
only have to put a microphone in each of hisher ears and record the sound. If you
believe that surround sound or ambisonic sound has accomplished the recording and
playback of high-fidelity 3-D audio, our standards probably differ. The study of the
human auditory perception of space will provide us with a better understanding of the

technical requirements for efficiently reproducing 3-D audio for human listeners.
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0.2 A Personal Statement

In the course of doing my degree, | have become convinced that | am suffering from a
“neglect syndrome.” Indoing my research, | have found that no matter how hard | work,
| cannot really see past the end of my nose. Most of us go around comfortable that we
areintelligent creatures, but put it to the test and try to understand something fundamen-
tally new and we often flounder. To show this, | will summarize my entire dissertation
in asingle sentence: A spectral contrast model based on overlapping frequency bands
of varying bandwidth and perhaps multiple frequency scales can provide a reasonable
algorithm for explaining much of the current psychophysical and neurophysiological
data related to human auditory localization. If | could have made this observation in
the beginning, | could have saved five years' time. It is curious what sometimes gives
people depth of insight. | am reminded of Ramachandran and Blakeslee's (1998) com-
ment that for most of usit is difficult to come up with several metaphorsfor “overdoing
things,” and that Shakespeare came up with: “To gild refined gold, to paint the lily, to
throw perfume on the violet, to smooth the ice, or add another hueto therainbow ... is
wasteful and ridiculous excess.” | could, of course, add my thesisto that list. | believe
that as we peer out at the world we rarely, if ever, see what is actually before us.

Some say that obtaining aPh.D. islike getting adriver’slicense. For me, admittedly
an American in my educational upbringing, this makes it all the more remarkable that
at the University of Sydney there is no viva voce. In other words, there is no direct
examination of the individual behind the work. It is like awarding a driver’s license
on the basis of watching a video tape. It isironic that this is the attitude of an insti-
tute of higher learning that teaches first-hand, empirical observation is the basis for all
scientific understanding and knowledge.

| would also like to say that | have recently come to the opinion that within the last

five years | have successfully completed two projects, not one, but that this dissertation
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is only concerned with only one of them. Nonetheless, in this preface | would like to
describe my “other” project because it has played a significant role in my trials and
tribulations over the last five years and | also believeit is a significant accomplishment.

What should really be considered as my first project was concerned with the prob-
lem of customizing acoustic transfer functions, known as head-rel ated transfer functions
(HRTFs), for individual listeners. That is to say, the human external auditory periph-
ery is a directional acoustic filter whose filtering properties vary from one listener to
another. It turns out that human auditory localization performance is sensitive to the
individual differencesin these filtering properties (I later quantified the extent to which
thisistrue). Therefore each listener requires his’her own set of acoustic transfer func-
tionsin order to be ableto synthesize arealistic virtual auditory space, i.e., high-fidelity
3-D audio over earphones, for that listener. Acoustically recording these acoustic trans-
fer functions is expensive both in time and equipment. Therefore, the goal of my first
project wasto create asimple method for generating HRTFs that does not require acous-
tical measurements to be made in the laboratory.

In the midst of my first project, my thesis advisor, Philip Leong, moved to the
Chinese University in Hong Kong. For better or worse, however, | was committed to
remaining at the University of Sydney and was mostly supervised by Simon Carlile on
a second and new project which involved trying to understand, as best as possible, the
spectral analysisinvolved in human auditory localization. Nonetheless, | believe that to
alarge degree, | have actually completed both projects.

As my first step in the project with Philip, | developed numerical solutions to the
acoustic wave equation for circular and elliptical disks and then for a prolate spheroid.
It became clear that solving the acoustic wave equation in a realistic manner for the
human external auditory periphery would require a sophisticated mathematical software
package, such as a Boundary Element Method package, and an imaging technique for

recording the shape of the human external auditory periphery. As these resources were
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not available, | moved away from a direct simulation of the acoustic wave equation in
search of amore practical solution.

As asecond step in this line of research, | built a life-like acoustical manneguin of
myself (see Figure 1) and recorded the differences in the acoustical transfer functions
with and without the torso. With the help of an honour student, a lighter and more
durable cast of the head was then created in which the ears could be rotated to change
the angle of the external ear with respect to the side of the head. The acoustic transfer
functions of the mannequin were then recorded for 7 different angles of the ear with
respect to the head. Using adirectional averaging technique for implementing principle
component analysis, | numerically modeled the functional dependence of the HRTFs

on the “ear angle”

Figure 1. A life-like acoustical mannequin was made.

The reasonable degree of success with the numerical modeling (Carlile, Jin and
Harvey, 1998) described above led to the creation of a database of 11 sets of HRTFs
for 11 different individuals. Using this database, an HRTF morphing model was cre-
ated in which 7 parameters (PCA weights) could be tuned to produce a complete set

of HRTFs. The 7 parameters were tuned manually in response to how well the listener
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could localize a set of test sounds. Tuning these parameters was difficult and resulted
in auditory localization performance that was still significantly worse than control per-
formance levels.

The above model was then improved in two ways: (1) a better PCA approximation
method was used, and (2) a new database of HRTFs was created using an identical
recording technique for 36 different human subjects. The new HRTF morphing model
provided a generative statistical technique to compress or smooth (in a lossy fashion)
the HRTFs for each of the 36 human subjects. An auditory localization experiment
with 5 human subjects was then carried out to determine how many PCA weights were
required for high-fidelity auditory localization. Following this, a measurement process
was developed for physically measuring the Cartesian coordinates of 20 morphological
landmarks defining the shape of the listener’s external auditory periphery. A bite bar
was made and a 3-D stylus pen was set up for recording the coordinates of the mor-
phologica landmarks. Multivariable linear regression analysis was then successfully
used to develop a functional mapping between the morphology of the external auditory
periphery and the HRTFs (see Jin, Leong, Leung, Corderoy and Carlile, 2000). It turns
out that approximately 68% of the morphological differencesinindividual ear shape are
significant for high-fidelity VAS. Thiswork hasresulted in 2 refereed conference papers

(those cited above) and a provisiona patent application for the University of Sydney.

0.3 Reading the Dissertation

Chapters 1, 2 and 3 provide a fairly extensive background review related to human
auditory localization. These chapters can be read on their own. Chapter 4 describes
the experimental methods that have been used. Chapters 5, 6, and 7 describe the three
phases of my research and each chapter can be read on its own. Chapter 5 describes a

time-delay neural network model of human auditory localization; Chapter 6 describes
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a psychoacoustical experiment investigating human sound localization of bandpass fil-
tered noise stimuli; Chapter 7 describes a psychoacoustical experiment that employs
the techniques of virtual auditory space to probe the relative contribution of the monau-
ral and interaural spectral cues. Chapter 8 provides a summary of the research and the
conclusionsthat can be derived fromit. It can be read both first and last asit providesa

quick overview of the focus of the work described in this dissertation.





