14 research outputs found

    Quintessence with Hybrid Potential

    Full text link
    I present the numerical solution of equations of the evolution of a universe containing background fluids (radiation, dark matter and baryonic matter), plus a scalar matter field with a hybrid potential that is a combination of exponential potential and power-law potential. The plot of the evolution of density parameters is compatible with our universe; and today's values of density parameters of dark energy, dark matter, baryonic matter, and Hubble parameter, and the age and size of our universe, found from this model, are very close to (and some times the same as) measured values.Comment: 10 pages, 4 figures include

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Probable Reasons for Neuron Copper Deficiency in the Brain of Patients with Alzheimer’s Disease: The Complex Role of Amyloid

    No full text
    Alzheimer’s disease is a progressive neurodegenerative disorder that eventually leads the affected patients to die. The appearance of senile plaques in the brains of Alzheimer’s patients is known as a main symptom of this disease. The plaques consist of different components, and according to numerous reports, their main components include beta-amyloid peptide and transition metals such as copper. In this disease, metal dyshomeostasis leads the number of copper ions to simultaneously increase in the plaques and decrease in neurons. Copper ions are essential for proper brain functioning, and one of the possible mechanisms of neuronal death in Alzheimer’s disease is the copper depletion of neurons. However, the reason for the copper depletion is as yet unknown. Based on the available evidence, we suggest two possible reasons: the first is copper released from neurons (along with beta-amyloid peptides), which is deposited outside the neurons, and the second is the uptake of copper ions by activated microglia

    Prioritization of Erosion Prone Sub-Watersheds using MCDM Methods in Roudzard Watershed, Khuzestan Province

    No full text
    Soil erosion has been one of the most important problems of watersheds in the world and is considered one of the main obstacles to achieving sustainable development in agriculture and natural resources. Identifying and prioritizing regions sensitive to soil erosion is essential for water and soil conservation and natural resource management in watersheds. The present research was performed in 2021 year to prioritize the soil erosion susceptibility in 12 sub-watersheds of the Roudzard watershed in Khouzestan province using morphometric analysis and multiple criteria decision-making (MCDM) methods. In this regard, 11 morphometric parameters including shape parameters such as compactness constant (Cc), circularity ratio (Rc), form factor (Rf), elongation ratio (Re), linear parameters such as drainage density (Dd), stream frequency (Fs), drainage texture (Dt), bifurcation ratio (Rb), Basin length (L), Length of overland flow (Lg), and topographic parameter including Ruggedness number (Rn) were extracted and their relative weights were calculated using Analytic Hierarchy Process (AHP). The prioritization sub-watershed to soil erosion was performed using TOPSIS, VIKOR, and SAW methods, and the results were combined using rank mean, Copeland, and Borda methods. The final prioritization was compared with the amount of specific erosion in the MPSIAC model by determining Spearman's correlation coefficient. The result of the evaluation of morphometric parameters by using the AHP model showed that drainage density (0.161), drainage texture (0.158), and stream frequency (0.146) had the greatest effect on the erodability of the sub-watersheds. In contrast, the form factor (0.049), Elongation Ratio (0.036), and shape factor (0.026) had the least effects on erodability of the study area. In this research, the Spearman correlation coefficient between the final result of prioritizing the sub-watershed and the MPSIAC model was obtained as 0.8 in p-value<0.01. The results of prioritization of the sub-watersheds in terms of their sensitivity to soil erosion showed that sub-watersheds 11, 12, and 10 with an area of 191.83 km2 are categorized as very sensitive to soil erosion due to high value of linear parameters, low value of shape parameters, sensitive geology formation, and poor vegetation cover and located in rank 1 to 3, respectively. According to the results sub-watersheds 11, 12, and 10 have the highest amount of specific erosion equal to 16.03, 12.48, and 11.6 tons per hectare per year, respectively. Therefore, these sub-watersheds are a priority for watershed management operations. The results of the present study showed that MCDM methods and morphometric analysis are suitable tools for identifying areas sensitive to soil erosion and using the combined methods of the results and it is possible to take advantage of each of the different multi-criteria decision-making methods

    Beneficial Effects of Anti-Inflammatory Diet in Modulating Gut Microbiota and Controlling Obesity

    No full text
    Obesity has consistently been associated with an increased risk of metabolic abnormalities such as diabetes, hyperlipidemia, and cardiovascular diseases, as well as the development of several types of cancer. In recent decades, unfortunately, the rate of overweight/obesity has increased significantly among adults and children. A growing body of evidence shows that there is a relationship between metabolic disorders such as obesity and the composition of the gut microbiota. Additionally, inflammation is considered to be a driving force in the obesity&ndash;gut microbiota connection. Therefore, it seems that anti-inflammatory nutrients, foods, and/or diets can play an essential role in the management of obesity by affecting the intestinal flora and controlling inflammatory responses. In this review, we describe the links between the gut microbiota, obesity, and inflammation, and summarize the benefits of anti-inflammatory diets in preventing obesity

    Role of Essential Oil of Mentha Spicata (Spearmint) in Addressing Reverse Hormonal and Folliculogenesis Disturbances in a Polycystic Ovarian Syndrome in a Rat Model

    No full text
    Abstract Purpose: Given the antiandrogenic effects of spearmint, in this study we evaluated the effects of its essential oil on polycystic ovarian syndrome in a rat model. Methods: Female rats were treated as follows: Control, normal rats which received 150 mg/kg spearmint oil or 300 mg/kg spearmint oil, or sesame oil; and PCOS-induced rats which received 150 mg/kg spearmint oil or 300 mg/kg spearmint oil, or sesame oil. Then the animals were killed and the levels of LH, FSH, testosterone and ovarian folliculogenesis were evaluated. Results: Spearmint oil reduced body weight, testosterone level, ovarian cysts and atretic follicles and increased Graafian follicles in PCOS rats. Conclusion: Spearmint has treatment potential on PCOS through inhibition of testosterone and restoration of follicular development in ovarian tissue

    Probable Reasons for Neuron Copper Deficiency in the Brain of Patients with Alzheimer’s Disease: The Complex Role of Amyloid

    No full text
    International audienceAlzheimer’s disease is a progressive neurodegenerative disorder that eventually leads the affected patients to die. The appearance of senile plaques in the brains of Alzheimer’s patients is known as a main symptom of this disease. The plaques consist of different components, and according to numerous reports, their main components include beta-amyloid peptide and transition metals such as copper. In this disease, metal dyshomeostasis leads the number of copper ions to simultaneously increase in the plaques and decrease in neurons. Copper ions are essential for proper brain functioning, and one of the possible mechanisms of neuronal death in Alzheimer’s disease is the copper depletion of neurons. However, the reason for the copper depletion is as yet unknown. Based on the available evidence, we suggest two possible reasons: the first is copper released from neurons (along with beta-amyloid peptides), which is deposited outside the neurons, and the second is the uptake of copper ions by activated microglia

    Role of Copper in the Onset of Alzheimer’s Disease Compared to Other Metals

    No full text
    Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterized by amyloid plaques in patients’ brain tissue. The plaques are mainly made of β-amyloid peptides and trace elements including Zn2+, Cu2+, and Fe2+. Some studies have shown that AD can be considered a type of metal dyshomeostasis. Among metal ions involved in plaques, numerous studies have focused on copper ions, which seem to be one of the main cationic elements in plaque formation. The involvement of copper in AD is controversial, as some studies show a copper deficiency in AD, and consequently a need to enhance copper levels, while other data point to copper overload and therefore a need to reduce copper levels. In this paper, the role of copper ions in AD and some contradictory reports are reviewed and discussed

    CCND1 Overexpression in Idiopathic Dilated Cardiomyopathy: A Promising Biomarker?

    No full text
    Cardiomyopathy, a disorder of electrical or heart muscle function, represents a type of cardiac muscle failure and culminates in severe heart conditions. The prevalence of dilated cardiomyopathy (DCM) is higher than that of other types (hypertrophic cardiomyopathy and restrictive cardiomyopathy) and causes many deaths. Idiopathic dilated cardiomyopathy (IDCM) is a type of DCM with an unknown underlying cause. This study aims to analyze the gene network of IDCM patients to identify disease biomarkers. Data were first extracted from the Gene Expression Omnibus (GEO) dataset and normalized based on the RMA algorithm (Bioconductor package), and differentially expressed genes were identified. The gene network was mapped on the STRING website, and the data were transferred to Cytoscape software to determine the top 100 genes. In the following, several genes, including VEGFA, IGF1, APP, STAT1, CCND1, MYH10, and MYH11, were selected for clinical studies. Peripheral blood samples were taken from 14 identified IDCM patients and 14 controls. The RT-PCR results revealed no significant differences in the expression of the genes APP, MYH10, and MYH11 between the two groups. By contrast, the STAT1, IGF1, CCND1, and VEGFA genes were overexpressed in patients more than in controls. The highest expression was found for VEGFA, followed by CCND1 (p < 0.001). Overexpression of these genes may contribute to disease progression in patients with IDCM. However, more patients and genes need to be analyzed in order to achieve more robust results
    corecore