369 research outputs found

    Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system

    Get PDF
    The Dicke model describing an ensemble of two-state atoms interacting with a single quantized mode of the electromagnetic field (with omission of the Â^2 term) exhibits a zero-temperature phase transition at a critical value of the dipole coupling strength. We propose a scheme based on multilevel atoms and cavity-mediated Raman transitions to realize an effective Dicke model operating in the phase transition regime. Optical light from the cavity carries signatures of the critical behavior, which is analyzed for the thermodynamic limit where the number of atoms is very large

    FORMULATION AND CHARACTERIZATION OF POLOXAMER 407 (R): THERMOREVERSIBLE GEL CONTAINING POLYMERIC MICROPARTICLES AND HYALURONIC ACID

    Full text link
    The influence of the composition and preparation method on the sol-gel transition temperature (Tsol-gel) and rheological response of poloxamer-based formulations was determined. Manual and more complex mechanical stirring were found to provide similar results. In addition, a linear dependence of Tsol-gel on the poloxamer content was observed in the range of concentrations analyzed, and a Poloxamer 407® concentration of 18% was selected. The addition of hyaluronic acid did not lead to significant changes in the Tsol-gel values. In contrast, the addition of microparticles caused a reduction in Tsol-gel without a significant reduction in gel strength, and pseudoplastic characteristics were observed, indicating that a thermoreversible gel was obtained with a rheology suitable for application in the treatment of burn wounds

    Entanglement and transport through correlated quantum dot

    Full text link
    We study quantum entanglement in a single-level quantum dot in the linear-response regime. The results show, that the maximal quantum value of the conductance 2e^2/h not always match the maximal entanglement. The pairwise entanglement between the quantum dot and the nearest atom of the lead is also analyzed by utilizing the Wootters formula for charge and spin degrees of freedom separately. The coexistence of zero concurrence and the maximal conductance is observed for low values of the dot-lead hybridization. Moreover, the pairwise concurrence vanish simultaneously for charge and spin degrees of freedom, when the Kondo resonance is present in the system. The values of a Kondo temperature, corresponding to the zero-concurrence boundary, are also provided.Comment: Presented on the International Conference "Nanoelectronics '06", 7-8 January 2006, Lancaster, U

    Optical signatures of quantum phase transitions in a light-matter system

    Get PDF
    Information about quantum phase transitions in conventional condensed matter systems, must be sought by probing the matter system itself. By contrast, we show that mixed matter-light systems offer a distinct advantage in that the photon field carries clear signatures of the associated quantum critical phenomena. Having derived an accurate, size-consistent Hamiltonian for the photonic field in the well-known Dicke model, we predict striking behavior of the optical squeezing and photon statistics near the phase transition. The corresponding dynamics resemble those of a degenerate parametric amplifier. Our findings boost the motivation for exploring exotic quantum phase transition phenomena in atom-cavity, nanostructure-cavity, and nanostructure-photonic-band-gap systems.Comment: 4 pages, 4 figure

    Continuous-wave room-temperature diamond maser

    Get PDF
    The maser, older sibling of the laser, has been confined to relative obscurity due to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this it has found application in deep-space communications and radio astronomy due to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid- state maser exploiting photo-excited triplet states in organic pentacene molecules paves the way for a new class of maser that could find applications in medicine, security and sensing, taking advantage of its sensitivity and low noise. However, to date, only pulsed operation has been observed in this system. Furthermore, organic maser molecules have poor thermal and mechanical properties, and their triplet sub-level decay rates make continuous emission challenging: alternative materials are therefore required. Therefore, inorganic materials containing spin-defects such as diamond and silicon carbide have been proposed. Here we report a continuous-wave (CW) room-temperature maser oscillator using optically pumped charged nitrogen-vacancy (NV) defect centres in diamond. This demonstration unlocks the potential of room-temperature solid-state masers for use in a new generation of microwave devices.Comment: 7 pages, 4 figure

    Is there a no-go theorem for superradiant quantum phase transitions in cavity and circuit QED ?

    Get PDF
    In cavity quantum electrodynamics (QED), the interaction between an atomic transition and the cavity field is measured by the vacuum Rabi frequency Ω0\Omega_0. The analogous term "circuit QED" has been introduced for Josephson junctions, because superconducting circuits behave as artificial atoms coupled to the bosonic field of a resonator. In the regime with Ω0\Omega_0 comparable to the two-level transition frequency, "superradiant" quantum phase transitions for the cavity vacuum have been predicted, e.g. within the Dicke model. Here, we prove that if the time-independent light-matter Hamiltonian is considered, a superradiant quantum critical point is forbidden for electric dipole atomic transitions due to the oscillator strength sum rule. In circuit QED, the capacitive coupling is analogous to the electric dipole one: yet, such no-go property can be circumvented by Cooper pair boxes capacitively coupled to a resonator, due to their peculiar Hilbert space topology and a violation of the corresponding sum rule

    A Recommendation to Implement Spanish in Construction Topics Course

    Get PDF
    The purpose of this report is to recommend the addition of a Spanish in Construction class to the Construction Management curriculum. Many of Cal Poly’s graduates enter a construction workforce which is composed heavily of Hispanic and Latino members. Historically, Hispanics and Latinos account for not only the most rapidly growing populations of construction, but also the most proportionally at-risk. In an industry as dangerous as construction, it is important that students are well-rounded and well-prepared to contribute as safely, efficiently, and flawlessly as possible. Thorough literature review and an interview of part-time Cal Poly lecturer and industry veteran, Eric Brinkman, this project reveals the need for an increased understanding of the Spanish language among construction professionals. This need is complemented by a department-wide survey of Construction Management students and faculty, which gives this recommendation a discovery component, including the newfound knowledge of high levels of student interest in learning Spanish. Down the road, this research and discovery should translate into the implementation of a technical elective course that Cal Poly students can opt to participate in

    Atomic quantum state transferring and swapping via quantum Zeno dynamics

    Full text link
    In this paper, we first demonstrate how to realize quantum state transferring (QST) from one atom to another based on quantum Zeno dynamics. Then, the QST protocol is generalized to realize the quantum state swapping (QSS) between two arbitrary atoms with the help of a third one. Furthermore, we also consider the QSS within a quantum network. The influence of decoherence is analyzed by numerical calculation. The results demonstrate that the protocols are robust against cavity decay.Comment: To appear in J. Opt. Soc. Am. B (JOSAB

    Quantum Many-Body Phenomena in Coupled Cavity Arrays

    Full text link
    The increasing level of experimental control over atomic and optical systems gained in the past years have paved the way for the exploration of new physical regimes in quantum optics and atomic physics, characterised by the appearance of quantum many-body phenomena, originally encountered only in condensed-matter physics, and the possibility of experimentally accessing them in a more controlled manner. In this review article we survey recent theoretical studies concerning the use of cavity quantum electrodynamics to create quantum many-body systems. Based on recent experimental progress in the fabrication of arrays of interacting micro-cavities and on their coupling to atomic-like structures in several different physical architectures, we review proposals on the realisation of paradigmatic many-body models in such systems, such as the Bose-Hubbard and the anisotropic Heisenberg models. Such arrays of coupled cavities offer interesting properties as simulators of quantum many-body physics, including the full addressability of individual sites and the accessibility of inhomogeneous models.Comment: overview article, 27 pages, 31 figure
    corecore