617 research outputs found

    Top Quarks as a Window to String Resonances

    Full text link
    We study the discovery potential of string resonances decaying to ttˉt\bar{t} final state at the LHC. We point out that top quark pair production is a promising and an advantageous channel for studying such resonances, due to their low Standard Model background and unique kinematics. We study the invariant mass distribution and angular dependence of the top pair production cross section via exchanges of string resonances. The mass ratios of these resonances and the unusual angular distribution may help identify their fundamental properties and distinguish them from other new physics. We find that string resonances for a string scale below 4 TeV can be detected via the ttˉt\bar{t} channel, either from reconstructing the ttˉt\bar{t} semi-leptonic decay or recent techniques in identifying highly boosted tops.Comment: 22 pages, 6 figure

    Therapeutic DNA Vaccine Encoding Peptide P10 against Experimental Paracoccidioidomycosis

    Get PDF
    Paracoccidioidomycosis (PCM), caused by Paracoccidioides brasiliensis, is the most prevalent invasive fungal disease in South America. Systemic mycoses are the 10th most common cause of death among infectious diseases in Brazil and PCM is responsible for more than 50% of deaths due to fungal infections. PCM is typically treated with sulfonamides, amphotericin B or azoles, although complete eradication of the fungus may not occur and relapsing disease is frequently reported. A 15-mer peptide from the major diagnostic antigen gp43, named P10, can induce a strong T-CD4+ helper-1 immune response in mice. The TEPITOPE algorithm and experimental data have confirmed that most HLA-DR molecules can present P10, which suggests that P10 is a candidate antigen for a PCM vaccine. In the current work, the therapeutic efficacy of plasmid immunization with P10 and/or IL-12 inserts was tested in murine models of PCM. When given prior to or after infection with P. brasiliensis virulent Pb 18 isolate, plasmid-vaccination with P10 and/or IL-12 inserts successfully reduced the fungal burden in lungs of infected mice. In fact, intramuscular administration of a combination of plasmids expressing P10 and IL-12 given weekly for one month, followed by single injections every month for 3 months restored normal lung architecture and eradicated the fungus in mice that were infected one month prior to treatment. The data indicate that immunization with these plasmids is a powerful procedure for prevention and treatment of experimental PCM, with the perspective of being also effective in human patients

    Prospective study of patients with persistent symptoms of dengue in Brazil

    Get PDF
    Dengue is an arboviral infection clinically recognized as an acute and self-limited disease. Persistence of dengue symptoms is known, but it has been little studied. The aim of this study was to characterize persistent symptoms in 113 patients with dengue followed up clinically and by laboratory testing at a tertiary hospital. Symptoms that persisted for more than 14 days were observed in 61 (54.0%) patients, and six (6.2%) of them had symptoms for 6 months or more. The persistent symptoms identified were myalgia, weakness, hair loss, memory loss, reduced resistance to physical effort, headache, reasoning problems, arthralgia, sleepiness- and emotional lability. The progression to persistent symptoms was significantly associated with hospitalization, older age, more severe disease, the presence of bleeding and comorbidities upon univariate analysis. Upon multivariate analysis, the presence of persistent symptoms continued to be significantly associated only with increased age and dengue with warning signs. The platelet count during the acute phase of the disease was significantly lower in the group with persistent symptoms. In conclusion, the frequency of progression to persistent symptoms in dengue is relevant in patients seen at a tertiary hospital and the persistence of symptoms is more common in patients with dengue with warning signs

    Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors

    Get PDF
    Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects

    Inhibition of PbGP43 expression may suggest that gp43 is a virulence factor in Paracoccidioides brasiliensis

    Get PDF
    ABSTARCT: Glycoprotein gp43 is an immunodominant diagnostic antigen for paracoccidioidomycosis caused by Paracoccidioides brasiliensis. It is abundantly secreted in isolates such as Pb339. It is structurally related to beta-1,3-exoglucanases, however inactive. Its function in fungal biology is unknown, but it elicits humoral, innate and protective cellular immune responses; it binds to extracellular matrix-associated proteins. In this study we applied an antisense RNA (aRNA) technology and Agrobacterium tumefaciens-mediated transformation to generate mitotically stable PbGP43 mutants (PbGP43 aRNA) derived from wild type Pb339 to study its role in P. brasiliensis biology and during infection. Control PbEV was transformed with empty vector. Growth curve, cell vitality and morphology of PbGP43 aRNA mutants were indistinguishable from those of controls. PbGP43 expression was reduced 80-85% in mutants 1 and 2, as determined by real time PCR, correlating with a massive decrease in gp43 expression. This was shown by immunoblotting of culture supernatants revealed with anti-gp43 mouse monoclonal and rabbit polyclonal antibodies, and also by affinity-ligand assays of extracellular molecules with laminin and fibronectin. In vitro, there was significantly increased TNF-α production and reduced yeast recovery when PbGP43 aRNA1 was exposed to IFN-γ-stimulated macrophages, suggesting reduced binding/uptake and/or increased killing. In vivo, fungal burden in lungs of BALB/c mice infected with silenced mutant was negligible and associated with decreased lung ΙΛ-10 and IL-6. Therefore, our results correlated low gp43 expression with lower pathogenicity in mice, but that will be definitely proven when PbGP43 knockouts become available.

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Model-Derived Dispersal Pathways from Multiple Source Populations Explain Variability of Invertebrate Larval Supply

    Get PDF
    Background: Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings: In this study we test whether dispersal and connectivity patterns generated from a biophysical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p,0.05) and strong, ranging from 0.34 to 0.81 at time lags of 26 to+5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p,0.001, and r = 0.79, p,0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance: The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provid

    Decoherence, Entanglement and Irreversibility in Quantum Dynamical Systems with Few Degrees of Freedom

    Full text link
    This review summarizes and amplifies on recent investigations of coupled quantum dynamical systems in the short wavelength limit. We formulate and attempt to answer three fundamental questions: (i) What drives a dynamical quantum system to behave classically ? (ii) What determines the rate at which two coupled quantum--mechanical systems become entangled ? (iii) How does irreversibility occur in quantum systems with few degrees of freedom ? We embed these three questions in the broader context of the quantum--classical correspondence, which motivates the use of short--wavelength approximations to quantum mechanics such as the trajectory-based semiclassical methods and random matrix theory. Doing so, we propose a novel investigative procedure towards decoherence and the emergence of classicality out of quantumness in dynamical systems coupled to external degrees of freedom. We reproduce known results derived using master equation or Lindblad approaches but also generate novel ones. In particular we show how local exponential instability also affects the temporal evolution of quantum chaotic dynamical systems. We extensively rely on numerical experiments to illustrate our findings and briefly comment on possible extensions to more complex problems involving environments with n1n \gg 1 interacting dynamical systems, going beyond the uncoupled harmonic oscillator model of Caldeira and Leggett.Comment: Final version, to appear in Advances in Physic
    corecore