1,935 research outputs found

    Retinal Ganglion Cells Can Rapidly Change Polarity from Off to On

    Get PDF
    Retinal ganglion cells are commonly classified as On-center or Off-center depending on whether they are excited predominantly by brightening or dimming within the receptive field. Here we report that many ganglion cells in the salamander retina can switch from one response type to the other, depending on stimulus events far from the receptive field. Specifically, a shift of the peripheral image—as produced by a rapid eye movement—causes a brief transition in visual sensitivity from Off-type to On-type for approximately 100 ms. We show that these ganglion cells receive inputs from both On and Off bipolar cells, and the Off inputs are normally dominant. The peripheral shift strongly modulates the strength of these two inputs in opposite directions, facilitating the On pathway and suppressing the Off pathway. Furthermore, we identify certain wide-field amacrine cells that contribute to this modulation. Depolarizing such an amacrine cell affects nearby ganglion cells in the same way as the peripheral image shift, facilitating the On inputs and suppressing the Off inputs. This study illustrates how inhibitory interneurons can rapidly gate the flow of information within a circuit, dramatically altering the behavior of the principal neurons in the course of a computation

    Investigating the reliability and validity of the Dutch versions of the illness management and recovery scales among clients with mental disorders

    Get PDF
    Background: The Illness Management and Recovery scales (IMRS) can measure the progress of clients’ illness self-management and recovery. Previous studies have examined the psychometric properties of the IMRS. Aims: This study examined the reliability and validity of the Dutch version of the IMRS. Method: Clients (n = 111) and clinicians (n = 40) completed the client and clinician versions of the IMRS, respectively. The scales were administered again 2 weeks later to assess stability over time. Validity was assessed with the Utrecht Coping List (UCL), Dutch Empowerment Scale (DES), and Brief Symptom Inventory (BSI). Results: The client and clinician versions of the IMRS had moderate internal reliability, with α = 0.69 and 0.71, respectively. The scales showed strong test–retest reliability, r = 0.79, for the client version and r = 0.86 for the clinician version. Correlations between client and clinician versions ranged from r = 0.37 to 0.69 for the total and subscales. We also found relationships in expected directions between the client IMRS and UCL, DES and BSI, which supports validity of the Dutch version of the IMRS. Conclusions: The Dutch version of the IMRS demonstrated good reliability and validity. The IMRS could be useful for Dutch-speaking programs interested in evaluating client progress on illness self-management and recovery

    Максим Рильський у світлі теорії та практики перекладу

    Get PDF
    У запропонованій статті проаналізовано актуальні проблеми теорії і практики перекладу у світлі завдань сучасного перекладознавства, зокрема, об’єктом аналізу є переклади М. Т. Рильським визначних творів зі світової літературної скарбниці.В данной статье анализируются актуальные проблемы теории и практики перевода в соответствии с задачами современного переводоведения, в частности, объектом анализа выступают переводы М. Т. Рыльским выдающихся произведений мировой литературы.In the offered article the issues of the day of theory and practice of translation are analysed in the light of tasks of modern translation theory in particular as an object of analysis translations of Maksym Rylski come forward prominent works from a world literary treasury

    A Lagrangian perspective on stable water isotopes during the West African Monsoon

    Get PDF
    We present a Lagrangian framework for identifying mechanisms that control the isotopic composition of mid-tropospheric water vapor in the Sahel region during the West African Monsoon 2016. In this region mixing between contrasting air masses, strong convective activity, as well as surface and rain evaporation lead to high variability in the distribution of stable water isotopologues. Using backward trajectories based on high-resolution isotope-enabled model data, we obtain information not only about the source regions of Sahelian air masses, but also about the evolution of H2_{2}O and its isotopologue HDO (expressed as δD) along the pathways of individual air parcels. We sort the full trajectory ensemble into groups with similar transport pathways and hydro-meteorological properties, such as precipitation and relative humidity, and investigate the evolution of the corresponding paired {H2_{2}O, δD} distributions. The use of idealized process curves in the {H2_{2}O, δD} phase space allows us to attribute isotopic changes to contributions from (1) air mass mixing, (2) Rayleigh condensation during convection, and (3) microphysical processes depleting the vapor beyond the Rayleigh prediction, i.e., partial rain evaporation in unsaturated and isotopic equilibration δin saturated conditions. Different combinations of these processes along the trajectory ensembles are found to determine the final isotopic composition in the Sahelian troposphere during the monsoon. The presented Lagrangian framework is a powerful tool for interpreting tropospheric water vapor distributions. In the future, it will be applied to satellite observations of H2_{2}O, δD} over Africa and other regions in order to better quantify characteristics of the hydrological cycle

    Field-Dependent Tilt and Birefringence of Electroclinic Liquid Crystals: Theory and Experiment

    Get PDF
    An unresolved issue in the theory of liquid crystals is the molecular basis of the electroclinic effect in the smectic-A phase. Recent x-ray scattering experiments suggest that, in a class of siloxane-containing liquid crystals, an electric field changes a state of disordered molecular tilt in random directions into a state of ordered tilt in one direction. To investigate this issue, we measure the optical tilt and birefringence of these liquid crystals as functions of field and temperature, and we develop a theory for the distribution of molecular orientations under a field. Comparison of theory and experiment confirms that these materials have a disordered distribution of molecular tilt directions that is aligned by an electric field, giving a large electroclinic effect. It also shows that the net dipole moment of a correlated volume of molecules, a key parameter in the theory, scales as a power law near the smectic-A--smectic-C transition.Comment: 18 pages, including 9 postscript figures, uses REVTeX 3.0 and epsf.st

    Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations

    Get PDF
    Gangliosides are glycolipids in which an oligosaccharide headgroup containing one or more sialic acids is connected to a ceramide. Gangliosides reside in the outer leaflet of the plasma membrane and play a crucial role in various physiological processes such as cell signal transduction and neuronal differentiation by modulating structures and functions of membrane proteins. Since the detailed behavior of gangliosides and protein-ganglioside interactions are poorly known, we investigated the interactions between the gangliosides GM1 and GM3 and the proteins aquaporin (AQP1) and WALP23 using equilibrium molecular dynamics simulations and potential of mean force calculations at both coarse-grained (CG) and atomistic levels. In atomistic simulations, based on the GROMOS force field, ganglioside aggregation appears to be a result of the balance between hydrogen bond interactions and steric hindrance of the headgroups. GM3 clusters are slightly larger and more ordered than GM1 clusters, due to the smaller headgroup of GM3. The different structures of GM1 and GM3 clusters from atomistic simulations are not observed at the CG level, based on the Martini model, implying a difference in driving forces for ganglioside interactions in atomistic and CG simulations. For protein-ganglioside interactions, in the atomistic simulations GM1 lipids bind to specific sites on the AQP1 surface, whereas they are depleted from WALP23. In the CG simulations, the ganglioside binding sites on the AQP1 surface are similar but ganglioside aggregation and protein-ganglioside interaction are more prevalent than in the atomistic simulations. Using the polarizable Martini water model, results got closer to the atomistic simulations. Although experimental data for validation is lacking, we proposed modified Martini parameters for gangliosides to more closely mimic the sizes and structures of ganglioside clusters observed at the atomistic level.</p

    Correlation between imaging and pathology in ductal carcinoma in situ of the breast

    Get PDF
    BACKGROUND: It is helpful in planning treatment for patients with ductal carcinoma in situ (DCIS) if the size and grade could be reliably predicted from the mammography. The aims of this study were to determine if the type of calcification can be best used to predict histopathological grade from the mammograms, to examine the association of mammographic appearance of DCIS with grade and to assess the correlation between mammographic size and pathological size. METHODS: Mammographic films and pathological slides of 115 patients treated for DCIS between 1986 and 2000 were reviewed and reclassified by a single radiologist and a single pathologist respectively. Prediction models for the European Pathologist Working Group (EPWG) and Van Nuys classifications were generated by ordinal regression. The association between mammographic appearance and grade was tested with the χ(2)-test. Relation of mammographic size with pathological size was established using linear regression. The relation was expressed by the correlation coefficient (r). RESULTS: The EPWG classification was correctly predicted in 68%, and the Van Nuys classification in 70% if DCIS was presented as microcalcifications. High grade was associated with presence of linear calcifications (p < 0.001). Association between mammograhic- and pathological size was better for DCIS presented as microcalcifications (r = 0.89, p < 0.001) than for DCIS presented as a density (r = 0.77, p < 0.001). CONCLUSIONS: Prediction of histopathological grade of DCIS presenting as microcalcifications is comparable using the Van Nuys and EPWG classification. There is no strict association of mammographic appearance with histopathological grade. There is a better linear relation between mammographic- and pathological size of DCIS presented as microcalcifications than as a density, although both relations are statistically significant
    corecore