875 research outputs found
Rejuvenating Power Spectra II: the Gaussianized galaxy density field
We find that, even in the presence of discreteness noise, a Gaussianizing
transform (producing a more-Gaussian one-point distribution) reduces
nonlinearities in the power spectra of cosmological matter and galaxy density
fields, in many cases drastically. Although Gaussianization does increase the
effective shot noise, it also increases the power spectrum's fidelity to the
linear power spectrum on scales where the shot noise is negligible.
Gaussianizing also increases the Fisher information in the power spectrum in
all cases and resolutions, although the gains are smaller in redshift space
than in real space. We also find that the gain in cumulative Fisher information
from Gaussianizing peaks at a particular grid resolution that depends on the
sampling level.Comment: Slight changes to match version accepted to ApJ. 7 pages, 8 figure
Unfolding the Hierarchy of Voids
We present a framework for the hierarchical identification and
characterization of voids based on the Watershed Void Finder. The Hierarchical
Void Finder is based on a generalization of the scale space of a density field
invoked in order to trace the hierarchical nature and structure of cosmological
voids. At each level of the hierarchy, the watershed transform is used to
identify the voids at that particular scale. By identifying the overlapping
regions between watershed basins in adjacent levels, the hierarchical void tree
is constructed. Applications on a hierarchical Voronoi model and on a set of
cosmological simulations illustrate its potential.Comment: 5 pages, 2 figure
The Spine of the Cosmic Web
We present the SpineWeb framework for the topological analysis of the Cosmic
Web and the identification of its walls, filaments and cluster nodes. Based on
the watershed segmentation of the cosmic density field, the SpineWeb method
invokes the local adjacency properties of the boundaries between the watershed
basins to trace the critical points in the density field and the separatrices
defined by them. The separatrices are classified into walls and the spine, the
network of filaments and nodes in the matter distribution. Testing the method
with a heuristic Voronoi model yields outstanding results. Following the
discussion of the test results, we apply the SpineWeb method to a set of
cosmological N-body simulations. The latter illustrates the potential for
studying the structure and dynamics of the Cosmic Web.Comment: Accepted for publication HIGH-RES version:
http://skysrv.pha.jhu.edu/~miguel/SpineWeb
Numerical estimation of densities
[Abridged] We present a novel technique, dubbed FiEstAS, to estimate the
underlying density field from a discrete set of sample points in an arbitrary
multidimensional space. FiEstAS assigns a volume to each point by means of a
binary tree. Density is then computed by integrating over an adaptive kernel.
As a first test, we construct several Monte Carlo realizations of a Hernquist
profile and recover the particle density in both real and phase space. At a
given point, Poisson noise causes the unsmoothed estimates to fluctuate by a
factor ~2 regardless of the number of particles. This spread can be reduced to
about 1 dex (~26 per cent) by our smoothing procedure. [...] We conclude that
our algorithm accurately measure the phase-space density up to the limit where
discreteness effects render the simulation itself unreliable. Computationally,
FiEstAS is orders of magnitude faster than the method based on Delaunay
tessellation that Arad et al. employed, making it practicable to recover
smoothed density estimates for sets of 10^9 points in 6 dimensions.Comment: 12 pages, 18 figures, submitted to MNRAS. The code is available upon
reques
Locally Cold Flows from Large-Scale Structure
We show that the "cold" Hubble flow observed for galaxies around the Milky
Way does not represent a problem in cosmology but is due to the particular
geometry and dynamics of our local wall. The behavior of the perturbed Hubble
flow around the Milky Way is the result of two main factors: at small scales (R
< 1 Mpc) the inflow is dominated by the gravitational influence of the Milky
Way. At large scales (R > 1 Mpc) the out flow reflects the expansion of our
local wall which "cools down" the peculiar velocities. This is an intrinsic
property of walls and is independent of cosmology. We find the dispersion of
the local Hubble flow (1 < R < 3 Mpc) around simulated "Milky Way" haloes
located at the centre of low-density cosmological walls to be {\sigma}_H ~ 30
km/s, in excellent agreement with observations. The expansion of our local wall
is also reflected in the value of the measured local Hubble constant. For
"Milky Way" haloes inside walls, we find super-Hubble flows with h_local \simeq
0.77 - 1.13. The radius of equilibrium (R_0) depends not only on the mass of
the central halo and the Hubble expansion but also on the dynamics given by the
local LSS geometry. The super-Hubble flow inside our local wall has the effect
of reducing the radius at which the local expansion balances the gravitational
influence of the Milky Way. By ignoring the dynamical effect of the local wall,
the mass of the Milky Way estimated from R_0 can be underestimated by as much
as ~ 30%.Comment: 5 pages, 3 figures, Submitted to MNRA
Systematics in the Gamma Ray Bursts Hubble diagram
Thanks to their enormous energy release which allows to detect them up to
very high redshift, Gamma Rays Bursts (GRBs) have recently attracted a lot of
interest to probe the Hubble diagram (HD) deep into the matter dominated era
and hence complement Type Ia Supernoave (SNeIa). However, lacking a local GRBs
sample, calibrating the scaling relations proposed as an equivalent to the
Phillips law to standardize GRBs is not an easy task because of the need to
estimate the GRBs luminosity distance in a model independent way. We consider
here three different calibration methods based on the use of a fiducial
CDM model, on cosmographic parameters and on the local regression on
SNeIa. We find that the calibration coefficients and the intrinsic scatter do
not significantly depend on the adopted calibration procedure. We then
investigate the evolution of these parameters with the redshift finding no
statistically motivated improvement in the likelihood so that the no evolution
assumption is actually a well founded working hypothesis. Under this
assumption, we then consider possible systematics effects on the HDs introduced
by the calibration method, the averaging procedure and the homogeneity of the
sample arguing against any significant bias. We nevertheless stress that a
larger GRBs sample with smaller uncertainties is needed to definitely conclude
that the different systematics considered here have indeed a negligible impact
on the HDs thus strengthening the use of GRBs as cosmological tools.Comment: 14 pages, 1 figure, 6 table
Critical illness-related bone loss is associated with osteoclastic and angiogenic abnormalities
Critically ill patients are at increased risk of fractures during rehabilitation, and can experience impaired healing of traumatic and surgical bone fractures. In addition, markers of bone resorption are markedly increased in critically ill patients, while markers of bone formation are decreased. In the current study, we have directly investigated the effect of critical illness on bone metabolism and repair. In a human in vitro model of critical illness, Fluorescence-activated cell sorting (FACS) analysis revealed an increase in circulating CD14+/CD11b+ osteoclast precursors in critically ill patient peripheral blood compared to healthy controls. In addition, the formation of osteoclasts was increased in patient peripheral blood mononuclear cell (PBMC) cultures compared to healthy controls, both in the presence and absence of osteoclastogenic factors receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Culturing PBMCs with 10% critically ill patient serum further increased osteoclast formation and activity in patient PBMCs only, and neutralization studies revealed that immunoglobulin G (IgG) antibody signaling through the immunoreceptor Fc receptor common γ chain III (FcRγIII) played an important role. When analyzing bone formation, no differences in osteogenic differentiation were observed using human periosteal-derived cells (hPDCs) treated with patient serum in vitro, but a decrease in the expression of vascular endothelial growth factor receptor 1 (VEGF-R1) suggested impaired vascularization. This was confirmed using serum-treated hPDCs implanted onto calcium phosphate scaffolds in a murine in vivo model of bone formation, where decreased vascularization and increased osteoclast activity led to a decrease in bone formation in scaffolds with patient serum-treated hPDCs. Together, these findings may help to define novel therapeutic targets to prevent bone loss and optimize fracture healing in critically ill patients
The GALEX Ultraviolet Atlas of Nearby Galaxies
We present images, integrated photometry, and surface-brightness and color profiles for a total of 1034 nearby galaxies recently observed by the Galaxy Evolution Explorer (GALEX) satellite in its far-ultraviolet (FUV; λ_(eff) = 1516 Å) and near-ultraviolet (NUV; λ_(eff) = 2267 Å) bands. Our catalog of objects is derived primarily from the GALEX Nearby Galaxies Survey (NGS) supplemented by galaxies larger than 1' in diameter serendipitously found in these fields and in other GALEX exposures of similar of greater depth. The sample analyzed here adequately describes the distribution and full range of properties (luminosity, color, star formation rate [SFR]) of galaxies in the local universe. From the surface brightness profiles obtained we have computed asymptotic magnitudes, colors, and luminosities, along with the concentration indices C31 and C42. We have also morphologically classified the UV surface brightness profiles according to their shape. This data set has been complemented with archival optical, near-infrared, and far-infrared fluxes and colors. We find that the integrated (FUV − K) color provides robust discrimination between elliptical and spiral/irregular galaxies and also among spiral galaxies of different subtypes. Elliptical galaxies with brighter K-band luminosities (i.e., more massive) are redder in (NUV − K) color but bluer in (FUV − NUV) (a color sensitive to the presence of a strong UV upturn) than less massive ellipticals. In the case of the spiral/irregular galaxies our analysis shows the presence of a relatively tight correlation between the (FUV − NUV) color (or, equivalently, the slope of the UV spectrum, β) and the total infrared-to-UV ratio. The correlation found between (FUV − NUV) color and K-band luminosity (with lower luminosity objects being bluer than more luminous ones) can be explained as due to an increase in the dust content with galaxy luminosity. The images in this Atlas along with the profiles and integrated properties are publicly available through a dedicated Web page
Gradual phyletic evolution at the generic level in early Eocene omomyid primates
Analysis of dental morphology in over 600 stratigraphically controlled specimens of tarsier-like primates from early Eocene strata in Bighorn Basin, Wyoming, provides important new data for understanding the tempo and mode of evolution in primates
A study of two-qubit density matrices with fermionic purifications
We study 12 parameter families of two qubit density matrices, arising from a
special class of two-fermion systems with four single particle states or
alternatively from a four-qubit state with amplitudes arranged in an
antisymmetric matrix. We calculate the Wooters concurrences and the
negativities in a closed form and study their behavior. We use these results to
show that the relevant entanglement measures satisfy the generalized
Coffman-Kundu-Wootters formula of distributed entanglement. An explicit formula
for the residual tangle is also given. The geometry of such density matrices is
elaborated in some detail. In particular an explicit form for the Bures metric
is given.Comment: 21 pages, 1 figur
- …