42 research outputs found

    RELATION OF KINEMATICS AND CONTACT FORCES IN THREE-BODY SYSTEMS WITH A LIMITED NUMBER OF PARTICLES

    Get PDF
    In many tribological systems, an intermediate layer of a limited number of abrasive particles exist. Thereby, the resulting wear and friction phenomena are desirable in many manufacturing processes, such as lapping or polishing, whereas in machine elements, they are unwanted due to reducing lifetime or performance.For a better understanding of the contact phenomena and the interaction of tribological systems with an intermediate layer of a limited number of particles, fundamental investigations are carried out on a tribometer test rig. For this purpose, two test scenarios are investigated, a) the kinematics and contact forces of single geometrically defined particles such as dodecahedron, icosahedron and hexahedron, and b) the contact forces and surface roughness of a layer of silicon carbide particles of different sizes.The measured ratio of tangential to normal force can be used as an indicator of the dominating kinematics of the particles and of the generated surface roughness, respectively. The higher the force ratio, the higher the tendency to slide for a given particle type and paring of particle and counter body.For one geometrically defined particle the short-time Fourier transform additionally helps to distinguish the state of motion since the excited frequencies during rolling are reduced.  For a layer of silicon carbide particles, the velocity and particle size have the strongest influence on the overall motion and the surface roughness produced. Larger particles tend to slide and create more scratches, while smaller particles tend to roll and create indentations in the counter body. Furthermore, for the same particle size, an increase in velocity causes a transition from sliding to rolling, resulting in an increased surface roughness

    Analyse und Modellierung der Prozess-Strukturwechselwirkungen beim Werkzeugschleifen

    Get PDF
    Die Schleifbearbeitung ist häufig ein abschließender Bearbeitungsschritt, dessen Misserfolg zu hohen wirtschaftlichen Verlusten führt. Um im Vorfeld stabile Prozessparameter und optimale Schleifbahnen finden und den Bearbeitungsablauf simulativ testen zu können, werden Modelle benötigt, die die Zusammenhänge über physikalische Gesetzmäßigkeiten abbilden. In dieser Arbeit sind speziell für das Werkzeugschleifen charakteristische Eigenschaften systematisch untersucht und ein Gesamtmodell des Schleifprozesses aufgebaut worden. Die untersuchten Haupteinflüsse sind dabei die aufgrund der starken Geometrieänderung durch den Nutenschleifprozess zeitlich veränderlichen dynamischen Eigenschaften des Werkstücks und die Anregung durch die Rotation und Topographie der Schleifscheibe. Analysiert werden darüber hinaus der Materialabtrag und die Schleifkräfte in Abhängigkeit der Prozessparameter. Die Ergebnisse der Untersuchung dienen als Basis zum Aufbau effizienter, überwiegend auf physikalischen Gesetzmäßigkeiten beruhender Einzelmodelle. Mit dem gekoppelten Gesamtmodell lassen sich Schleifbearbeitungen an einseitig eingespannten und lang auskragenden Werkstücken hochdynamisch und bis zu einigen Minuten abbilden. Es können die Schleifkräfte sowie die Geometriefehler der geschliffenen Werkstücke aufgrund ihrer Durchsenkung berechnet und eine Abschätzung der Werkstücktemperatur durchgeführt werden. Darüber hinaus lässt sich das Schleifmodell zur Anpassung der Schleifbahn nutzen um die Geometriefehler zu reduzieren und die Effizienz der Bearbeitung zu steigern. Durch die physikalisch begründeten Modelle ist die systematische Untersuchung des Schleifens und der Wechselwirkungen möglich, wodurch das Verständnis des Schleifprozesses erweitert wird.:Inhaltsverzeichnis Formelverzeichnis VII Kurzfassung XI Abstract XII 1 Einleitung und Ziel der Arbeit 1 2 Stand desWissens und der Forschung 4 2.1 Modellvorstellung des Schleifprozesses 5 2.2 Schleifprozessmodelle 7 2.2.1 Kinematikmodelle 9 2.2.2 Schleifkraftmodelle 14 2.2.3 Temperaturmodelle 17 2.3 Prozessdynamik 19 2.3.1 Schwingungen 19 2.3.2 Rattererkennung im Zeitbereich 21 2.3.3 Rattererkennung im Frequenzbereich 22 3 Analyse und Modellierung der Systemstruktur 24 3.1 Charakterisierung der Dynamikeigenschaften des Werkstücks 26 3.2 Maschinentisch und Werkstückeinspannung 29 3.3 Modellierung der Werkstückstruktur 34 3.4 Parameterbestimmung für das Strukturmodell und Einflussanalyse 41 4 Analyse und Modellierung der Anregungsmechanismen 51 4.1 Dynamische Einflüsse beim Schleifen 51 4.2 Charakterisierung der Schleifscheibeneinflüsse auf die Werkstückdynamik 53 4.3 Modellierung der Schleifscheibentopographie 56 4.4 Schleifscheibenverschleiß 63 4.5 Implementierung des Schleifscheibenmodells im Gesamtmodell 67 5 Kontaktmodellierung und Prozesseinflussanalyse 69 5.1 Kontaktanalyse und Schleifkraftberechnung 69 5.2 Materialabtragsmodellierung 78 5.3 Prozesseinflussanalyse auf die Schleifkraft 83 5.3.1 Einfluss der Schleifscheibentopographie 84 5.3.2 Einfluss der Prozessparameter 89 5.4 Prozesseinflußanalyse auf die Werkstückgeometrie 93 5.4.1 Parametereinfluss auf die Werkstückgeometrie 93 5.4.2 Parametereinfluss auf die Rauheit der geschliffenen Werkstückoberfläche 95 6 Temperaturmodellierung 99 6.1 Grundmodelle bewegter Wärmequellen 99 6.2 Erweiterungen zur Abbildung von Schleifprozessen 102 7 Gesamtsimulation des Werkzeugschleifens 109 7.1 Einfluss der Simulationsmodule 112 7.2 Variation der Prozessparameter 115 7.3 Variation der Werkstückgeometrie 121 7.4 Variation des Werkstückquerschnitts 124 7.5 Kinematikvariation zur Verbesserung der Formhaltigkeit 129 8 Zusammenfassung 131 A Unterteilung der Fertigungsverfahren 135 B Mathematische Grundlagen 136 B.1 Herleitung der Ansatzfunktionen und Systemmatritzen 136 B.2 Partikuläre Lösung für Systeme mit Fremderregung 141 C Analytische Beschreibung der Kontaktfläche von Werkstücken mit Spiralnut 143 D Simulationsergebnisse 145 D.1 Simulationsergebnis des Längsnutenschleifens 145 D.2 Einfluss der Simulationsmodule 146 D.3 Variation der Prozessparameter 147 D.4 Variation der Werkstückgeometrie 149 D.5 Variation der auskragenden Werkstücklänge 150 D.6 Variation des Werkstückquerschnitts 151 LiteraturAs final machine processing mostly grinding is used so failure of this production step leads to high economic losses. To avoid instable process condition, to adapt the grinding wheel path, and to simulate grinding setups in advance, efficient and physically based models are need. In this work especially the tool grinding process is analysed and characteristically effects are investigated to build up an overall grinding model. The main effects are thereby the time variant dynamical properties of the workpiece due to strong geometry changes during the flute grinding process and the excitation due to the rotation and topography of the grinding wheel. Additionally analysis of the contact conditions and grinding forces in dependency of the predefined process parameters are carried out. Based on the results of these investigation efficient models are build up to represent the behaviour mostly by physical laws. With the coupled model, grinding processes of one-sided clamped and long cantilevering workpieces can be simulated high dynamically over several minutes. It is possible to predict grinding forces and geometry errors of the ground flute due to deformation of the workpiece. Additionally the temperature of the workpiece can be estimated. Furthermore the grinding wheel path can be adapted and tested to reduce geometrical errors and to increase the efficiency of the manufacturing process. With these physically based models systematically investigations of the grinding process and the interaction are possible. With this simulation the understanding of grinding can be enhanced which is important to adapt the manufacturing process.:Inhaltsverzeichnis Formelverzeichnis VII Kurzfassung XI Abstract XII 1 Einleitung und Ziel der Arbeit 1 2 Stand desWissens und der Forschung 4 2.1 Modellvorstellung des Schleifprozesses 5 2.2 Schleifprozessmodelle 7 2.2.1 Kinematikmodelle 9 2.2.2 Schleifkraftmodelle 14 2.2.3 Temperaturmodelle 17 2.3 Prozessdynamik 19 2.3.1 Schwingungen 19 2.3.2 Rattererkennung im Zeitbereich 21 2.3.3 Rattererkennung im Frequenzbereich 22 3 Analyse und Modellierung der Systemstruktur 24 3.1 Charakterisierung der Dynamikeigenschaften des Werkstücks 26 3.2 Maschinentisch und Werkstückeinspannung 29 3.3 Modellierung der Werkstückstruktur 34 3.4 Parameterbestimmung für das Strukturmodell und Einflussanalyse 41 4 Analyse und Modellierung der Anregungsmechanismen 51 4.1 Dynamische Einflüsse beim Schleifen 51 4.2 Charakterisierung der Schleifscheibeneinflüsse auf die Werkstückdynamik 53 4.3 Modellierung der Schleifscheibentopographie 56 4.4 Schleifscheibenverschleiß 63 4.5 Implementierung des Schleifscheibenmodells im Gesamtmodell 67 5 Kontaktmodellierung und Prozesseinflussanalyse 69 5.1 Kontaktanalyse und Schleifkraftberechnung 69 5.2 Materialabtragsmodellierung 78 5.3 Prozesseinflussanalyse auf die Schleifkraft 83 5.3.1 Einfluss der Schleifscheibentopographie 84 5.3.2 Einfluss der Prozessparameter 89 5.4 Prozesseinflußanalyse auf die Werkstückgeometrie 93 5.4.1 Parametereinfluss auf die Werkstückgeometrie 93 5.4.2 Parametereinfluss auf die Rauheit der geschliffenen Werkstückoberfläche 95 6 Temperaturmodellierung 99 6.1 Grundmodelle bewegter Wärmequellen 99 6.2 Erweiterungen zur Abbildung von Schleifprozessen 102 7 Gesamtsimulation des Werkzeugschleifens 109 7.1 Einfluss der Simulationsmodule 112 7.2 Variation der Prozessparameter 115 7.3 Variation der Werkstückgeometrie 121 7.4 Variation des Werkstückquerschnitts 124 7.5 Kinematikvariation zur Verbesserung der Formhaltigkeit 129 8 Zusammenfassung 131 A Unterteilung der Fertigungsverfahren 135 B Mathematische Grundlagen 136 B.1 Herleitung der Ansatzfunktionen und Systemmatritzen 136 B.2 Partikuläre Lösung für Systeme mit Fremderregung 141 C Analytische Beschreibung der Kontaktfläche von Werkstücken mit Spiralnut 143 D Simulationsergebnisse 145 D.1 Simulationsergebnis des Längsnutenschleifens 145 D.2 Einfluss der Simulationsmodule 146 D.3 Variation der Prozessparameter 147 D.4 Variation der Werkstückgeometrie 149 D.5 Variation der auskragenden Werkstücklänge 150 D.6 Variation des Werkstückquerschnitts 151 Literatu

    Physical Modeling of Process Forces in Grinding

    Get PDF
    This paper deals with material removal mechanisms in grinding by considering single grit-workpiece interactions. Individual investigations were performed both experimentally and using finite element simulations. Firstly, a comparison between the Johnson-Cooke material model and a Crystal Plasticity finite element method was performed with the help of micro-indentation experiments. Here the research question was answered if an anisotropic material model better describe the grinding process and process forces compared to an isotropic material model. Secondly, four discretization approaches were employed: pure Lagrangian (LAG), Arbitrary Lagrange Eulerian (ALE), Particle Finite Element Method (PFEM), and Smooth Particle Hydrodynamics (SPH), to simulate a micro-cutting operation of A2024 T351 aluminium. This study aims to compare the conventional approaches (LAG and ALE) to newer approaches (PFEM and SPH). The orthogonal cutting models were benchmarked against a micro-cutting experiment presented in literature, by comparing the obtained cutting and passive forces. The study was then extended to negative rake angles to study the effect on the discretization approaches for grinding. Thirdly, scratch experiments were investigated for a brittle material sodalime glass and A2024 T351 aluminium. Effects of the linear speed of the device, depth of cut, and conical tool angle were analyzed and tendencies are built. Finally, a realistic simulation of the manufacturing process of a grinding wheel was developed, starting with the raw material, compression, sintering, and dressing until the final grinding surface. As a result of the simulations, virtual grinding wheel topographies can be visualized and analyzed with regard to the output variables from grinding wheels such as bonding strength and static grain count. The individual research studies help in understanding the material removal mechanisms in a single grit scratch process as well as in the understanding of the overall grinding wheel topography. This in turn helps in the developing an overall physical force model for scratching/grinding to predict mechanical output parameters and hence reduce the need for experimentation

    On the development of rod-based models for pneumatically actuated soft robot arms: A five-parameter constitutive relation

    Full text link
    While soft robots have many attractive features compared to their hard counterparts, developing tractable models for these highly deformable, nonlinear, systems is challenging. In a recent paper, the authors published a non-classic, five-parameter constitutive relation for a rod-based model of a widely used, pneumatically actuated soft robot arm. It is natural to ask if the complexity of the relation can be eliminated by redesigning the actuator? To this end, finite element models and experimental results are used to further explore the five-parameter constitutive relation. For multiple designs of the pneumatically actuated soft robot arm, we are able to demonstrate how finite element models can be employed in place of experiments to specify the constitutive relations and how the relations are scalable by actuator length and applied pressure. Our primary result is the finding that the five-parameter constitutive relation is germane to pneumatically actuated soft robot arms and the parameters for this relation can be determined by three finite element simulations

    Elastic Inflatable Actuators for Soft Robotic Applications

    Get PDF
    The 20th century’s robotic systems have been made out of stiff materials and much of the developments in the field have pursued ever more accurate and dynamic robots which thrive in industrial automation settings and will probably continue to do so for many decades to come. However, the 21st century’s robotic legacy may very well become that of soft robots. This emerging domain is characterized by continuous soft structures that simultaneously fulfil the role of robotic link and robotic actuator, where prime focus is on design and fabrication of the robotic hardware instead of software control to achieve a desired operation. These robots are anticipated to take a prominent role in delicate tasks where classic robots fail, such as in minimally invasive surgery, active prosthetics and automation tasks involving delicate irregular objects. Central to the development of these robots is the fabrication of soft actuators to generate movement. This paper reviews a particularly attractive type of soft actuators that are driven by pressurized fluids. These actuators have recently gained substantial traction on the one hand due to the technology push from better simulation tools and new manufacturing technologies including soft-lithography and additive manufacturing, and on the other hand by a market pull from the applications listed above. This paper provides an overview of the different advanced soft actuator configurations, their design, fabrication and applications.This research is supported by the Fund for Scientific Research-Flanders (FWO), and the European Research Council (ERC starting grant HIENA)

    Analyse und Modellierung der Prozess-Strukturwechselwirkungen beim Werkzeugschleifen

    Get PDF
    Die Schleifbearbeitung ist häufig ein abschließender Bearbeitungsschritt, dessen Misserfolg zu hohen wirtschaftlichen Verlusten führt. Um im Vorfeld stabile Prozessparameter und optimale Schleifbahnen finden und den Bearbeitungsablauf simulativ testen zu können, werden Modelle benötigt, die die Zusammenhänge über physikalische Gesetzmäßigkeiten abbilden. In dieser Arbeit sind speziell für das Werkzeugschleifen charakteristische Eigenschaften systematisch untersucht und ein Gesamtmodell des Schleifprozesses aufgebaut worden. Die untersuchten Haupteinflüsse sind dabei die aufgrund der starken Geometrieänderung durch den Nutenschleifprozess zeitlich veränderlichen dynamischen Eigenschaften des Werkstücks und die Anregung durch die Rotation und Topographie der Schleifscheibe. Analysiert werden darüber hinaus der Materialabtrag und die Schleifkräfte in Abhängigkeit der Prozessparameter. Die Ergebnisse der Untersuchung dienen als Basis zum Aufbau effizienter, überwiegend auf physikalischen Gesetzmäßigkeiten beruhender Einzelmodelle. Mit dem gekoppelten Gesamtmodell lassen sich Schleifbearbeitungen an einseitig eingespannten und lang auskragenden Werkstücken hochdynamisch und bis zu einigen Minuten abbilden. Es können die Schleifkräfte sowie die Geometriefehler der geschliffenen Werkstücke aufgrund ihrer Durchsenkung berechnet und eine Abschätzung der Werkstücktemperatur durchgeführt werden. Darüber hinaus lässt sich das Schleifmodell zur Anpassung der Schleifbahn nutzen um die Geometriefehler zu reduzieren und die Effizienz der Bearbeitung zu steigern. Durch die physikalisch begründeten Modelle ist die systematische Untersuchung des Schleifens und der Wechselwirkungen möglich, wodurch das Verständnis des Schleifprozesses erweitert wird.:Inhaltsverzeichnis Formelverzeichnis VII Kurzfassung XI Abstract XII 1 Einleitung und Ziel der Arbeit 1 2 Stand desWissens und der Forschung 4 2.1 Modellvorstellung des Schleifprozesses 5 2.2 Schleifprozessmodelle 7 2.2.1 Kinematikmodelle 9 2.2.2 Schleifkraftmodelle 14 2.2.3 Temperaturmodelle 17 2.3 Prozessdynamik 19 2.3.1 Schwingungen 19 2.3.2 Rattererkennung im Zeitbereich 21 2.3.3 Rattererkennung im Frequenzbereich 22 3 Analyse und Modellierung der Systemstruktur 24 3.1 Charakterisierung der Dynamikeigenschaften des Werkstücks 26 3.2 Maschinentisch und Werkstückeinspannung 29 3.3 Modellierung der Werkstückstruktur 34 3.4 Parameterbestimmung für das Strukturmodell und Einflussanalyse 41 4 Analyse und Modellierung der Anregungsmechanismen 51 4.1 Dynamische Einflüsse beim Schleifen 51 4.2 Charakterisierung der Schleifscheibeneinflüsse auf die Werkstückdynamik 53 4.3 Modellierung der Schleifscheibentopographie 56 4.4 Schleifscheibenverschleiß 63 4.5 Implementierung des Schleifscheibenmodells im Gesamtmodell 67 5 Kontaktmodellierung und Prozesseinflussanalyse 69 5.1 Kontaktanalyse und Schleifkraftberechnung 69 5.2 Materialabtragsmodellierung 78 5.3 Prozesseinflussanalyse auf die Schleifkraft 83 5.3.1 Einfluss der Schleifscheibentopographie 84 5.3.2 Einfluss der Prozessparameter 89 5.4 Prozesseinflußanalyse auf die Werkstückgeometrie 93 5.4.1 Parametereinfluss auf die Werkstückgeometrie 93 5.4.2 Parametereinfluss auf die Rauheit der geschliffenen Werkstückoberfläche 95 6 Temperaturmodellierung 99 6.1 Grundmodelle bewegter Wärmequellen 99 6.2 Erweiterungen zur Abbildung von Schleifprozessen 102 7 Gesamtsimulation des Werkzeugschleifens 109 7.1 Einfluss der Simulationsmodule 112 7.2 Variation der Prozessparameter 115 7.3 Variation der Werkstückgeometrie 121 7.4 Variation des Werkstückquerschnitts 124 7.5 Kinematikvariation zur Verbesserung der Formhaltigkeit 129 8 Zusammenfassung 131 A Unterteilung der Fertigungsverfahren 135 B Mathematische Grundlagen 136 B.1 Herleitung der Ansatzfunktionen und Systemmatritzen 136 B.2 Partikuläre Lösung für Systeme mit Fremderregung 141 C Analytische Beschreibung der Kontaktfläche von Werkstücken mit Spiralnut 143 D Simulationsergebnisse 145 D.1 Simulationsergebnis des Längsnutenschleifens 145 D.2 Einfluss der Simulationsmodule 146 D.3 Variation der Prozessparameter 147 D.4 Variation der Werkstückgeometrie 149 D.5 Variation der auskragenden Werkstücklänge 150 D.6 Variation des Werkstückquerschnitts 151 LiteraturAs final machine processing mostly grinding is used so failure of this production step leads to high economic losses. To avoid instable process condition, to adapt the grinding wheel path, and to simulate grinding setups in advance, efficient and physically based models are need. In this work especially the tool grinding process is analysed and characteristically effects are investigated to build up an overall grinding model. The main effects are thereby the time variant dynamical properties of the workpiece due to strong geometry changes during the flute grinding process and the excitation due to the rotation and topography of the grinding wheel. Additionally analysis of the contact conditions and grinding forces in dependency of the predefined process parameters are carried out. Based on the results of these investigation efficient models are build up to represent the behaviour mostly by physical laws. With the coupled model, grinding processes of one-sided clamped and long cantilevering workpieces can be simulated high dynamically over several minutes. It is possible to predict grinding forces and geometry errors of the ground flute due to deformation of the workpiece. Additionally the temperature of the workpiece can be estimated. Furthermore the grinding wheel path can be adapted and tested to reduce geometrical errors and to increase the efficiency of the manufacturing process. With these physically based models systematically investigations of the grinding process and the interaction are possible. With this simulation the understanding of grinding can be enhanced which is important to adapt the manufacturing process.:Inhaltsverzeichnis Formelverzeichnis VII Kurzfassung XI Abstract XII 1 Einleitung und Ziel der Arbeit 1 2 Stand desWissens und der Forschung 4 2.1 Modellvorstellung des Schleifprozesses 5 2.2 Schleifprozessmodelle 7 2.2.1 Kinematikmodelle 9 2.2.2 Schleifkraftmodelle 14 2.2.3 Temperaturmodelle 17 2.3 Prozessdynamik 19 2.3.1 Schwingungen 19 2.3.2 Rattererkennung im Zeitbereich 21 2.3.3 Rattererkennung im Frequenzbereich 22 3 Analyse und Modellierung der Systemstruktur 24 3.1 Charakterisierung der Dynamikeigenschaften des Werkstücks 26 3.2 Maschinentisch und Werkstückeinspannung 29 3.3 Modellierung der Werkstückstruktur 34 3.4 Parameterbestimmung für das Strukturmodell und Einflussanalyse 41 4 Analyse und Modellierung der Anregungsmechanismen 51 4.1 Dynamische Einflüsse beim Schleifen 51 4.2 Charakterisierung der Schleifscheibeneinflüsse auf die Werkstückdynamik 53 4.3 Modellierung der Schleifscheibentopographie 56 4.4 Schleifscheibenverschleiß 63 4.5 Implementierung des Schleifscheibenmodells im Gesamtmodell 67 5 Kontaktmodellierung und Prozesseinflussanalyse 69 5.1 Kontaktanalyse und Schleifkraftberechnung 69 5.2 Materialabtragsmodellierung 78 5.3 Prozesseinflussanalyse auf die Schleifkraft 83 5.3.1 Einfluss der Schleifscheibentopographie 84 5.3.2 Einfluss der Prozessparameter 89 5.4 Prozesseinflußanalyse auf die Werkstückgeometrie 93 5.4.1 Parametereinfluss auf die Werkstückgeometrie 93 5.4.2 Parametereinfluss auf die Rauheit der geschliffenen Werkstückoberfläche 95 6 Temperaturmodellierung 99 6.1 Grundmodelle bewegter Wärmequellen 99 6.2 Erweiterungen zur Abbildung von Schleifprozessen 102 7 Gesamtsimulation des Werkzeugschleifens 109 7.1 Einfluss der Simulationsmodule 112 7.2 Variation der Prozessparameter 115 7.3 Variation der Werkstückgeometrie 121 7.4 Variation des Werkstückquerschnitts 124 7.5 Kinematikvariation zur Verbesserung der Formhaltigkeit 129 8 Zusammenfassung 131 A Unterteilung der Fertigungsverfahren 135 B Mathematische Grundlagen 136 B.1 Herleitung der Ansatzfunktionen und Systemmatritzen 136 B.2 Partikuläre Lösung für Systeme mit Fremderregung 141 C Analytische Beschreibung der Kontaktfläche von Werkstücken mit Spiralnut 143 D Simulationsergebnisse 145 D.1 Simulationsergebnis des Längsnutenschleifens 145 D.2 Einfluss der Simulationsmodule 146 D.3 Variation der Prozessparameter 147 D.4 Variation der Werkstückgeometrie 149 D.5 Variation der auskragenden Werkstücklänge 150 D.6 Variation des Werkstückquerschnitts 151 Literatu
    corecore