256 research outputs found
Role of ethylene on various ripening pathways and on the development of sensory quality of Charentais cantaloupe melons
Charentais melons (Cucumis melo L., var cantalupensis Naud.) in which ethylene biosynthesis has been suppressed by an antisense ACC oxidase gene have been used to better understand the role of ethylene in the regulation of the ripening process of climacteric fruit and on the development of sensory qualities. We have shown that a number of biochemical and molecular processes associated with the ripening of climacteric fruit are ethylene-independent. In some cases, such as softening of the flesh, the same pathway comprises both ethylene-dependent and -independent components. The various ethylene-dependent events exhibit differential sensitivity to ethylene. The threshold level for degreening of the rind is 1 ppm, while 2.5 ppm are required to trigger the ethylene-dependent component of the softening process. The saturating level of ethylene for all these events is less than 5 ppm, which is by far lower than the internal ethylene concentrations found in the fruit at the climacteric peak (around 100 ppm). Detachment of the fruit influences the development of respiratory climacteric. Fruit remaining attached to the vine, although producing higher levels of ethylene, exhibit a reduced climacteric rise in respiration as compared to detached fruit. The response of antisense ACO fruit to exogenous ethylene in terms of respiration is higher in detached than in attached fruit. Ethylene-suppressed melons show a severe reduction of aroma volatiles production, particularly in ester production. In the biosynthetic pathway of aliphatic esters, the dehydrogenation of fatty acids and aldehydes appears to be ethylene-dependent. In contrast, alcohol acetylation comprises ethylene-dependent and ethylene-independent components, probably corresponding to differentially regulated alcohol acetyl transferases. In terms of sensory quality, these data show that the extension of shelf-life through the inhibition of ethylene production has some beneficial effects on texture and sugar accumulation but is detrimental for the generation of aroma
Deciphering the origin, evolution, and physiological function of the subtelomeric arylalcohol dehydrogenase gene family in the yeast Saccharomyces cerevisiae
Homology searches indicate that Saccharomyces cerevisiae strain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). Yeast AAD genes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes, AAD4 and AAD14, encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeast AAD genes are undergoing pseudogenization. The 5\u27 sequence of AAD15 has been deleted from the genome. Repair of an AAD3 missense mutation at the catalytically essential Tyr73 residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPHdependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates that AAD genes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeast AAD genes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeast AAD gene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role for AAD genes in lignin degradation that is degenerating as a result of yeast\u27s domestication and use in brewing, baking, and other industrial applications
Análise de mutação germinativa do Tpit em cães da raça Poodle com hiperadrenocorticismo ACTH-dependente
There is a high incidence of pituitary-dependent hyperadrenocorticism (PDH) in Poodle dogs, with family members being affected by the disease, suggesting a genetic involvement. Tpit is an obligate transcription factor for the expression of pro-opiomelanocortingene and for corticotroph terminal differentiation. The aim of the present study was to screen the Tpit gene for germline mutations in Poodles with PDH. Fifty Poodle dogs (33 female, 8.71 +/- 2.8 years) with PDH and 50 healthy Poodle dogs (32 females, 9.4241 2.8 years) were studied. Genomic DNA was isolated from peripheral blood, amplified by PCR and submitted to automatic sequence. No mutation in the coding region of Tpit was found, whereas the new single nucleotide polymorphism p.S343G, in heterozygous state, was found in the same frequency in both PDH and control groups. We concluded that Tpit gain-of-function mutations are not involved in the etiology of PDH in Poodle dogs.O hiperadrenocorticismo ACTH-dependente (HACAD) apresenta elevada incidência em cães da raça Poodle, sendo que membros da mesma famÃlia têm sido acometidos pela doença, sugerindo envolvimento genético. Tpit é um fator de transcrição obrigatório para a expressão do gene da pro-opiomelanocortina e para a diferenciação terminal dos corticotrofos. O objetivo deste trabalho foi pesquisar mutações germinativas no gene Tpit em Poodles com HACAD. Cinquenta cães da raça Poodle, 33 fêmeas, média de idade de 8,71±2,8 anos, com HACAD, e 50 cães Poodles saudáveis, 32 fêmeas, média de idade de 9,4±2,8 anos, foram estudados. Mutações na região codificadora do gene Tpit não foram identificadas. Foi observado um novo polimorfismo em heterozigose, p.S343G, com a mesma frequência no grupo de cães com HACAD e no grupo-controle. Conclui-se que a mutação ativadora no gene Tpit não está envolvida na patogênese do hiperadrenocorticismo ACTH-dependente em cães da raça Poodle
Humanized mice efficiently engrafted with fetal hepatoblasts and syngeneic immune cells develop human monocytes and NK cells
Human liver chimeric mice are useful models of human hepatitis virus infection, including hepatitis B and C virus infections. Independently, immunodeficient mice reconstituted with CD34(+) hematopoietic stem cells (HSC) derived from fetal liver reliably develop human T and B lymphocytes. Combining these systems has long been hampered by inefficient liver reconstitution of human fetal hepatoblasts. Our study aimed to enhance hepatoblast engraftment in order to create a mouse model with syngeneic human liver and immune cells.The effects of human oncostatin-M administration on fetal hepatoblast engraftment into immunodeficient fah(-/-) mice was tested. Mice were then transplanted with syngeneic human hepatoblasts and HSC after which human leukocyte chimerism and functionality were analyzed by flow cytometry, and mice were challenged with HBV.Addition of human oncostatin-M enhanced human hepatoblast engraftment in immunodeficient fah(-/-) mice by 5-100 fold. In contrast to mice singly engrafted with HSC, which predominantly developed human T and B lymphocytes, mice co-transplanted with syngeneic hepatoblasts also contained physiological levels of human monocytes and natural killer cells. Upon infection with HBV, these mice displayed rapid and sustained viremia.Our study provides a new mouse model with improved human fetal hepatoblast engraftment and an expanded human immune cell repertoire. With further improvements, this model may become useful for studying human immunity against viral hepatitis.Important human pathogens such as hepatitis B virus, hepatitis C virus and human immunodeficiency virus only infect human cells which complicates the development of mouse models for the study of these pathogens. One way to make mice permissive for human pathogens is the transplantation of human cells into immune-compromised mice. For instance, the transplantation of human liver cells will allow the infection of these so-called liver chimeric mice with hepatitis B virus and hepatitis C virus. The co-transplantation of human immune cells into liver chimeric mice will further allow the study of human immune responses to hepatitis B virus or hepatitis C virus. However, for immunological studies it will be crucial that the transplanted human liver and immune cells are derived from the same human donor. In our study we describe the efficient engraftment of human fetal liver cells and immune cells derived from the same donor into mice. We show that liver co-engraftment resulted in an expanded human immune cell repertoire, including monocytes and natural killer cells in the liver. We further demonstrate that these mice could be infected with hepatitis B virus, which lead to an expansion of natural killer cells. In conclusion we have developed a new mouse model that could be useful to study human immune responses to human liver pathogens
The Effect of the Acetone Extract of Arctotis arctotoides (Asteraceae) on the Growth and Ultrastructure of Some Opportunistic Fungi Associated with HIV/AIDS
In this study, the effect of the acetone extract of Arctotis arctotoides (L.f.) O. Hoffm. (Asteraceae) on the growth and ultrastructure of some opportunistic fungi associated with HIV/AIDS was analyzed by means of scanning electron microscope (SEM). Remarkable morphological alterations in the fungal mycelia which were attributed to the loss of cell wall strength ranged from loss of turgidity and uniformity, collapse of entire hyphae to evident destruction of the hyphae. The elements responsible for giving the fungi their characteristic virulence were detected and quantified by energy dispersive X-ray microanalysis techniques. X-ray microanalysis showed the specific spectra of sodium, potassium and sulfur as the principal intersection of the four pathogenic fungi studied. Since these ions have the potential of fostering fungal invasion by altering the permeability of hosts’ membranes, their presence was considered inherent to the pathogenicity of the opportunistic fungi. Hence, these findings indicate the potential of the crude extract of A. arctotoides in preventing fungal invasion and subsequent infection of host’s membranes
The role of experiments in understanding fishery-induced evolution
Evidence of fishery-induced evolution has been accumulating rapidly from various avenues of investigation. Here we review the knowledge gained from experimental approaches. The strength of experiments is in their ability to disentangle genetic from environmental differences. Common garden experiments have provided direct evidence of adaptive divergence in the wild and therefore the evolvability of various traits that influence production in numerous species. Most of these cases involve countergradient variation in physiological, life history, and behavioral traits. Selection experiments have provided examples of rapid life history evolution and, more importantly, that fishery-induced selection pressures cause simultaneous divergence of not one but a cluster of genetically and phenotypically correlated traits that include physiology, behavior, reproduction, and other life history characters. The drawbacks of experiments are uncertainties in the scale-up from small, simple environments to larger and more complex systems; the concern that taxons with short life cycles used for experimental research are atypical of those of harvested species; and the difficulty of adequately simulating selection due to fishing. Despite these limitations, experiments have contributed greatly to our understanding of fishery-induced evolution on both empirical and theoretical levels. Future advances will depend on integrating knowledge from experiments with those from modeling, field studies, and molecular genetic approaches
In vitro antibacterial activity of some plant essential oils
BACKGROUND: To evaluate the antibacterial activity of 21 plant essential oils against six bacterial species. METHODS: The selected essential oils were screened against four gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris) and two gram-positive bacteria Bacillus subtilis and Staphylococcus aureus at four different concentrations (1:1, 1:5, 1:10 and 1:20) using disc diffusion method. The MIC of the active essential oils were tested using two fold agar dilution method at concentrations ranging from 0.2 to 25.6 mg/ml. RESULTS: Out of 21 essential oils tested, 19 oils showed antibacterial activity against one or more strains. Cinnamon, clove, geranium, lemon, lime, orange and rosemary oils exhibited significant inhibitory effect. Cinnamon oil showed promising inhibitory activity even at low concentration, whereas aniseed, eucalyptus and camphor oils were least active against the tested bacteria. In general, B. subtilis was the most susceptible. On the other hand, K. pneumoniae exhibited low degree of sensitivity. CONCLUSION: Majority of the oils showed antibacterial activity against the tested strains. However Cinnamon, clove and lime oils were found to be inhibiting both gram-positive and gram-negative bacteria. Cinnamon oil can be a good source of antibacterial agents
Benthic fluxes of oxygen and nutrients in sublittoral fine sands in a north-western Mediterranean coastal area
[EN] Traditionally, benthic metabolism in sublittoral permeable sands have not been widely studied, although these sands can have a direct and transcendental impact in coastal ecosystems. This study aims to determine oxygen and nutrient fluxes at the sediment-water interface and the study of possible interactions among environmental variables and the benthic metabolism in well-sorted fine sands. Eight sampling campaigns were carried out over the annual cycle in the eastern coast of Spain (NW Mediterranean) at 9 m depth station with permeable bottoms. Water column and sediment samples were collected in order to determine physico-chemical and biological variables. Moreover, in situ incubations were performed to estimate the exchange of dissolved solutes in the sediment-water interface using dark and light benthic chambers. Biochemical compounds at the sediment surface ranged between 160 and 744 mu g g(-1) for proteins, 296 and 702 mu g g(-1) for carbohydrates, and between 327 and 1224 [mu g C g(-1) for biopolymeric carbon. Chloroplastic pigment equivalents in sediments were mainly composed by chlorophyll a (1.81-2.89 mu g g(-1)). These sedimentary organic descriptors indicated oligotrophic conditions according to the biochemical approach used. In this sense, the most abundant species in the macrobenthic community were sensitive to organic enrichment. In dark conditions, benthic fluxes behaved as a sink of oxygen and a source of nutrients. Oxygen fluxes (between -26,610 and -10,635 mu mol m(-2) d(-1)) were related with labile organic fraction (r= -0.86, p < 0.01 with biopolymeric carbon; r= -0.91, p < 0.01 with chloroplastic pigment equivalents). Daily fluxes of dissolved oxygen, that were obtained by adding light and dark fluxes, were only positive in spring campaigns (6966 mu mol m(-2) d(-1)) owing to the highest incident irradiance levels (r=0.98, p < 0.01) that stimulate microphytobenthic primary production. Microphytobenthos played an important role on benthic metabolism and was the main primary producer in this coastal ecosystem. However, an average annual uptake of 31 mmol m-2 d(-1) of oxygen and a release of DIN and Si(OH)(4) (329 and 68 mmol m(-2) d(-1) respectively) were estimated in these bottoms, which means heterotrophic conditions. (C) 2015 Elsevier Ltd. All rights reserved.We are grateful for the valuable comments of anonymous reviewers on previous version of the manuscript. This research was supported by the Conselleria d'Educacio (Generalitat Valenciana).Sospedra, J.; Falco, S.; Morata, T.; Gadea, I.; Rodilla, M. (2015). Benthic fluxes of oxygen and nutrients in sublittoral fine sands in a north-western Mediterranean coastal area. Continental Shelf Research. 97:32-42. doi:10.1016/j.csr.2015.02.002S32429
The role of IL-22 in viral infections: paradigms and paradoxes
Interleukin-22 (IL-22) is a member of the IL-10 family of cytokines. Hematopoietic cells express IL-22, and this cytokine signals through the heterodimeric IL-22 receptor expressed by non-hematopoietic cells. A growing body of evidence points toward a role for IL-22 in a diverse array of biological functions ranging from cellular proliferation, tissue protection and regeneration, and inflammation. In recent years, the role that IL-22 plays in antiviral immune responses has been examined in a number of infection models. Herein, we assess our current understanding of how IL-22 determines the outcome of viral infections and define common mechanisms that are evident from, sometimes paradoxical, findings derived from these studies. Finally, we discuss the potential therapeutic utility of IL-22 manipulation in the treatment and prevention of viral infections and associated pathologies
- …