6 research outputs found

    Analytical model for BTEX natural attenuation in the presence of fuel ethanol and its anaerobic metabolite acetate

    Get PDF
    Copyright © 2013 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Contaminant Hydrology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Contaminant Hydrology Vol. 146 (2013), DOI: 10.1016/j.jconhyd.2012.12.006Flow-through column studies were conducted to mimic the natural attenuation of ethanol and BTEX mixtures, and to consider potential inhibitory effects of ethanol and its anaerobic metabolite acetate on BTEX biodegradation. Results were analyzed using a one-dimensional analytical model that was developed using consecutive reaction differential equations based on first-order kinetics. Decrease in pH due to acetogenesis was also modeled, using charge balance equations under CaCO3 dissolution conditions. Delay in BTEX removal was observed and simulated in the presence of ethanol and acetate. Acetate was the major volatile fatty acid intermediate produced during anaerobic ethanol biodegradation (accounting for about 58% of the volatile fatty acid mass) as suggested by the model data fit. Acetate accumulation (up to 1.1 g/L) near the source zone contributed to a pH decrease by almost one unit. The anaerobic degradation of ethanol (2 g/L influent concentration) at the source zone produced methane at concentrations exceeding its solubility (≅ 26 mg/L). Overall, this simple analytical model adequately described ethanol degradation, acetate accumulation and methane production patterns, suggesting that it could be used as a screening tool to simulate lag times in BTEX biodegradation, changes in groundwater pH and methane generation following ethanol-blended fuel releases

    1,4-Dioxane-degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes

    Get PDF
    Two bacterial consortia were enriched from uncontaminated soil by virtue of their ability to grow on 1,4-dioxane (dioxane) as a sole carbon and energy source. Their specific dioxane degradation rates at 30°C, pH = 7 (i.e. 5.7 to 7.1 g-dioxane per g-protein per day) were comparable to those of two dioxane-metabolizing archetypes: Pseudonocardia dioxanivoransCB1190 and Mycobacterium dioxanotrophicusPH-06. Based on 16S rRNA sequencing, Mycobacterium was the dominant genus. Acetylene inhibition tests suggest that dioxane degradation was mediated by monooxygenases. However, qPCR analyses targeting the tetrahydrofuran/dioxane monooxygenase gene (thmA/dxmA) (which is, to date, the only sequenced dioxane monooxygenase gene) were negative, indicating that other (as yet unknown) catabolic gene(s) were responsible. DNA sequence analyses also showed threefold to sevenfold enrichment of group 5 and group 6 soluble di-iron monooxygenase (SDIMO) genes relative to the original soil samples. Whereas biodegradation of trace levels of dioxane is a common challenge at contaminated sites, both consortia degraded dioxane at low initial concentrations (300 μg l−1) below detectable levels (5 μg l−1) in bioaugmented microcosms prepared with impacted groundwater. Overall, this work shows that dioxane-degrading bacteria (and the associated natural attenuation potential) exist even in some uncontaminated soils, and may be enriched to broaden bioaugmentation options for sites experiencing insufficient dioxane catabolic capacity

    Analytical model for BTEX natural attenuation in the presence of fuel ethanol and its anaerobic metabolite acetate

    No full text
    Copyright © 2013 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Contaminant Hydrology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Contaminant Hydrology Vol. 146 (2013), DOI: 10.1016/j.jconhyd.2012.12.006Flow-through column studies were conducted to mimic the natural attenuation of ethanol and BTEX mixtures, and to consider potential inhibitory effects of ethanol and its anaerobic metabolite acetate on BTEX biodegradation. Results were analyzed using a one-dimensional analytical model that was developed using consecutive reaction differential equations based on first-order kinetics. Decrease in pH due to acetogenesis was also modeled, using charge balance equations under CaCO3 dissolution conditions. Delay in BTEX removal was observed and simulated in the presence of ethanol and acetate. Acetate was the major volatile fatty acid intermediate produced during anaerobic ethanol biodegradation (accounting for about 58% of the volatile fatty acid mass) as suggested by the model data fit. Acetate accumulation (up to 1.1 g/L) near the source zone contributed to a pH decrease by almost one unit. The anaerobic degradation of ethanol (2 g/L influent concentration) at the source zone produced methane at concentrations exceeding its solubility (≅ 26 mg/L). Overall, this simple analytical model adequately described ethanol degradation, acetate accumulation and methane production patterns, suggesting that it could be used as a screening tool to simulate lag times in BTEX biodegradation, changes in groundwater pH and methane generation following ethanol-blended fuel releases

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora

    The conservation status of the world’s reptiles

    Get PDF
    Effective and targeted conservation action requires detailed information about species, their distribution, systematics and ecology as well as the distribution of threat processes which affect them. Knowledge of reptilian diversity remains surprisingly disparate, and innovative means of gaining rapid insight into the status of reptiles are needed in order to highlight urgent conservation cases and inform environmental policy with appropriate biodiversity information in a timely manner. We present the first ever global analysis of extinction risk in reptiles, based on a random representative sample of 1500 species (16% of all currently known species). To our knowledge, our results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles. Nearly one in five reptilian species are threatened with extinction, with another one in five species classed as Data Deficient. The proportion of threatened reptile species is highest in freshwater environments, tropical regions and on oceanic islands, while data deficiency was highest in tropical areas, such as Central Africa and Southeast Asia, and among fossorial reptiles. Our results emphasise the need for research attention to be focussed on tropical areas which are experiencing the most dramatic rates of habitat loss, on fossorial reptiles for which there is a chronic lack of data, and on certain taxa such as snakes for which extinction risk may currently be underestimated due to lack of population information. Conservation actions specifically need to mitigate the effects of human-induced habitat loss and harvesting, which are the predominant threats to reptiles
    corecore