802 research outputs found

    PT{\cal PT} Symmetry and PT{\cal PT}-Enhanced Quantum Sensing in a Spin-Boson System

    Full text link
    Open systems, governed by non-Hermitian Hamiltonians, evolve fundamentally differently from their Hermitian counterparts and facilitate many unusual applications. Although non-Hermitian but parity-time (PT{\cal PT}) symmetric dynamics has been realized in a variety of classical or semiclassical systems, its fully quantum-mechanical demonstration is still lacking. Here we ingeniously engineer a highly controllable anti-Hermitian spin-boson model in a circuit quantum-electrodynamical structure composed of a decaying artificial atom (pseudospin) interacting with a bosonic mode stored in a microwave resonator. Besides observing abrupt changes in the spin-boson entanglement evolution and bifurcation transition in quantum Rabi splitting, we demonstrate super-sensitive quantum sensing by mapping the observable of interest to a hitherto unobserved PT{\cal PT}-manifested entanglement evolution. These results pave the way for exploring non-Hermitian entanglement dynamics and PT{\cal PT}-enhanced quantum sensing empowered by nonclassical correlations.Comment: 25 pages, 19 figure

    Roadmap on spatiotemporal light fields

    Full text link
    Spatiotemporal sculpturing of light pulse with ultimately sophisticated structures represents the holy grail of the human everlasting pursue of ultrafast information transmission and processing as well as ultra-intense energy concentration and extraction. It also holds the key to unlock new extraordinary fundamental physical effects. Traditionally, spatiotemporal light pulses are always treated as spatiotemporally separable wave packet as solution of the Maxwell's equations. In the past decade, however, more generalized forms of spatiotemporally nonseparable solution started to emerge with growing importance for their striking physical effects. This roadmap intends to highlight the recent advances in the creation and control of increasingly complex spatiotemporally sculptured pulses, from spatiotemporally separable to complex nonseparable states, with diverse geometric and topological structures, presenting a bird's eye viewpoint on the zoology of spatiotemporal light fields and the outlook of future trends and open challenges.Comment: This is the version of the article before peer review or editing, as submitted by an author to Journal of Optics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Study of J/ψ→ppˉJ/\psi\to p\bar{p} and J/ψ→nnˉJ/\psi\to n\bar{n}

    Get PDF
    The decays J/ψ→ppˉJ/\psi\to p\bar{p} and J/ψ→nnˉJ/\psi\to n\bar{n} have been investigated with a sample of 225.2 million J/ψJ/\psi events collected with the BESIII detector at the BEPCII e+e−e^+e^- collider. The branching fractions are determined to be B(J/ψ→ppˉ)=(2.112±0.004±0.031)×10−3\mathcal{B}(J/\psi\to p\bar{p})=(2.112\pm0.004\pm0.031)\times10^{-3} and B(J/ψ→nnˉ)=(2.07±0.01±0.17)×10−3\mathcal{B}(J/\psi\to n\bar{n})=(2.07\pm0.01\pm0.17)\times10^{-3}. Distributions of the angle Ξ\theta between the proton or anti-neutron and the beam direction are well described by the form 1+αcos⁥2Ξ1+\alpha\cos^2\theta, and we find α=0.595±0.012±0.015\alpha=0.595\pm0.012\pm0.015 for J/ψ→ppˉJ/\psi\to p\bar{p} and α=0.50±0.04±0.21\alpha=0.50\pm0.04\pm0.21 for J/ψ→nnˉJ/\psi\to n\bar{n}. Our branching-fraction results suggest a large phase angle between the strong and electromagnetic amplitudes describing the J/ψ→NNˉJ/\psi\to N\bar{N} decay.Comment: 16 pages, 13 figures, the 2nd version, submitted to PR

    Search for the Lepton Flavor Violation Process J/ψ→eÎŒJ/\psi \to e\mu at BESIII

    Get PDF
    We search for the lepton-flavor-violating decay of the J/ψJ/\psi into an electron and a muon using (225.3±2.8)×106(225.3\pm2.8)\times 10^{6} J/ψJ/\psi events collected with the BESIII detector at the BEPCII collider. Four candidate events are found in the signal region, consistent with background expectations. An upper limit on the branching fraction of B(J/ψ→eÎŒ)<1.5×10−7\mathcal{B}(J/\psi \to e\mu)< 1.5 \times 10^{-7} (90% C.L.) is obtained

    First observation of the M1 transition ψ(3686)→γηc(2S)\psi(3686)\to \gamma\eta_c(2S)

    Get PDF
    Using a sample of 106 million \psi(3686) events collected with the BESIII detector at the BEPCII storage ring, we have made the first measurement of the M1 transition between the radially excited charmonium S-wave spin-triplet and the radially excited S-wave spin-singlet states: \psi(3686)\to\gamma\eta_c(2S). Analyses of the processes \psi(2S)\to \gamma\eta_c(2S) with \eta_c(2S)\to \K_S^0 K\pi and K^+K^-\pi^0 gave an \eta_c(2S) signal with a statistical significance of greater than 10 standard deviations under a wide range of assumptions about the signal and background properties. The data are used to obtain measurements of the \eta_c(2S) mass (M(\eta_c(2S))=3637.6\pm 2.9_\mathrm{stat}\pm 1.6_\mathrm{sys} MeV/c^2), width (\Gamma(\eta_c(2S))=16.9\pm 6.4_\mathrm{stat}\pm 4.8_\mathrm{sys} MeV), and the product branching fraction (\BR(\psi(3686)\to \gamma\eta_c(2S))\times \BR(\eta_c(2S)\to K\bar K\pi) = (1.30\pm 0.20_\mathrm{stat}\pm 0.30_\mathrm{sys})\times 10^{-5}). Combining our result with a BaBar measurement of \BR(\eta_c(2S)\to K\bar K \pi), we find the branching fraction of the M1 transition to be \BR(\psi(3686)\to\gamma\eta_c(2S)) = (6.8\pm 1.1_\mathrm{stat}\pm 4.5_\mathrm{sys})\times 10^{-4}.Comment: 7 pages, 1 figure, 1 tabl

    Search for Baryonic Decays of \psi(3770) and \psi(4040)

    Full text link
    By analyzing data samples of 2.9 fb^{-1} collected at \sqrt s=3.773 GeV, 482 pb^{-1} collected at \sqrt s=4.009 GeV and 67 pb^{-1} collected at \sqrt s=3.542, 3.554, 3.561, 3.600 and 3.650 GeV with the BESIII detector at the BEPCII storage ring, we search for \psi(3770) and \psi(4040) decay to baryonic final states, including \Lambda\bar\Lambda\pi^+\pi^-, \Lambda \bar\Lambda\pi^0, \Lambda\bar\Lambda\eta, \Sigma^+ \bar\Sigma^-, \Sigma^0 \bar\Sigma^0, \Xi^-\bar\Xi^+ and \Xi^0\bar\Xi^0 decays. None are observed, and upper limits are set at the 90% confidence level.Comment: 9 pages, 3 figure

    Two-photon widths of the χc0,2\chi_{c0, 2} states and helicity analysis for \chi_{c2}\ar\gamma\gamma}

    Full text link
    Based on a data sample of 106 M ψâ€Č\psi^{\prime} events collected with the BESIII detector, the decays \psi^{\prime}\ar\gamma\chi_{c0, 2},\chi_{c0, 2}\ar\gamma\gamma are studied to determine the two-photon widths of the χc0,2\chi_{c0, 2} states. The two-photon decay branching fractions are determined to be {\cal B}(\chi_{c0}\ar\gamma\gamma) = (2.24\pm 0.19\pm 0.12\pm 0.08)\times 10^{-4} and {\cal B}(\chi_{c2}\ar\gamma\gamma) = (3.21\pm 0.18\pm 0.17\pm 0.13)\times 10^{-4}. From these, the two-photon widths are determined to be Γγγ(χc0)=(2.33±0.20±0.13±0.17)\Gamma_{\gamma \gamma}(\chi_{c0}) = (2.33\pm0.20\pm0.13\pm0.17) keV, Γγγ(χc2)=(0.63±0.04±0.04±0.04)\Gamma_{\gamma \gamma}(\chi_{c2}) = (0.63\pm0.04\pm0.04\pm0.04) keV, and R\cal R =Γγγ(χc2)/Γγγ(χc0)=0.271±0.029±0.013±0.027=\Gamma_{\gamma \gamma}(\chi_{c2})/\Gamma_{\gamma \gamma}(\chi_{c0})=0.271\pm 0.029\pm 0.013\pm 0.027, where the uncertainties are statistical, systematic, and those from the PDG {\cal B}(\psi^{\prime}\ar\gamma\chi_{c0,2}) and Γ(χc0,2)\Gamma(\chi_{c0,2}) errors, respectively. The ratio of the two-photon widths for helicity λ=0\lambda=0 and helicity λ=2\lambda=2 components in the decay \chi_{c2}\ar\gamma\gamma is measured for the first time to be f0/2=Γγγλ=0(χc2)/Γγγλ=2(χc2)=0.00±0.02±0.02f_{0/2} =\Gamma^{\lambda=0}_{\gamma\gamma}(\chi_{c2})/\Gamma^{\lambda=2}_{\gamma\gamma}(\chi_{c2}) = 0.00\pm0.02\pm0.02.Comment: 10 pages, 4 figure

    Evidence for the Direct Two-Photon Transition from &#968;(3686) to J/&#968;

    Get PDF

    The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2,MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA,the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. In addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions ofthe SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE.This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. The SDSS website, http://www.sdss.org, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.PostprintPeer reviewe
    • 

    corecore