PT{\cal PT} Symmetry and PT{\cal PT}-Enhanced Quantum Sensing in a Spin-Boson System

Abstract

Open systems, governed by non-Hermitian Hamiltonians, evolve fundamentally differently from their Hermitian counterparts and facilitate many unusual applications. Although non-Hermitian but parity-time (PT{\cal PT}) symmetric dynamics has been realized in a variety of classical or semiclassical systems, its fully quantum-mechanical demonstration is still lacking. Here we ingeniously engineer a highly controllable anti-Hermitian spin-boson model in a circuit quantum-electrodynamical structure composed of a decaying artificial atom (pseudospin) interacting with a bosonic mode stored in a microwave resonator. Besides observing abrupt changes in the spin-boson entanglement evolution and bifurcation transition in quantum Rabi splitting, we demonstrate super-sensitive quantum sensing by mapping the observable of interest to a hitherto unobserved PT{\cal PT}-manifested entanglement evolution. These results pave the way for exploring non-Hermitian entanglement dynamics and PT{\cal PT}-enhanced quantum sensing empowered by nonclassical correlations.Comment: 25 pages, 19 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions