106 research outputs found

    Relationship between ecosystem productivity and photosynthetically-active radiation for northern peatlands

    Get PDF
    We analyzed the relationship between net ecosystem exchange of carbon dioxide (NEE) and irradiance (as photosynthetic photon flux density or PPFD), using published and unpublished data that have been collected during midgrowing season for carbon balance studies at seven peatlands in North America and Europe. NEE measurements included both eddy-correlation tower and clear, static chamber methods, which gave very similar results. Data were analyzed by site, as aggregated data sets by peatland type (bog, poor fen, rich fen, and all fens) and as a single aggregated data set for all peatlands. In all cases, a fit with a rectangular hyperbola (NEE = α PPFD Pmax/(α PPFD + Pmax) + R) better described the NEE-PPFD relationship than did a linear fit (NEE = β PPFD + R). Poor and rich fens generally had similar NEE-PPFD relationships, while bogs had lower respiration rates (R = −2.0μmol m−2s−1 for bogs and −2.7 μmol m−2s−1 for fens) and lower NEE at moderate and high light levels (Pmax = 5.2 μmol m−2s−1 for bogs and 10.8 μmol m−2s−1 for fens). As a single class, northern peatlands had much smaller ecosystem respiration (R = −2.4 μmol m−2s−1) and NEE rates (α = 0.020 and Pmax = 9.2μmol m−2s−1) than the upland ecosystems (closed canopy forest, grassland, and cropland) summarized by Ruimy et al. [1995]. Despite this low productivity, northern peatland soil carbon pools are generally 5–50 times larger than upland ecosystems because of slow rates of decomposition caused by litter quality and anaerobic, cold soils

    Drivers of Holocene palsa distribution in North America

    Get PDF
    Palsas and peat plateaus are climatically sensitive landforms in permafrost peatlands. Climate envelope models have previously related palsa/peat plateau distributions in Europe to modern climate, but similar bioclimatic modelling has not been attempted for North America. Recent climate change has rendered many palsas/peat plateaus in this region, and their valuable carbon stores, vulnerable. We fitted a binary logistic regression model to predict palsa/peat plateau presence for North America by relating the distribution of 352 extant landforms to gridded modern climate data. Our model accurately classified 85.3% of grid cells that contain observed palsas/peat plateaus and 77.1% of grid cells without observed palsas/peat plateaus. The model indicates that modern North American palsas/peat plateaus are supported by cold, dry climates with large seasonal temperature ranges and mild growing seasons. We used palaeoclimate simulations from a general circulation model to simulate Holocene distributions of palsas/peat plateaus at 500-year intervals. We constrained these outputs with timings of peat initiation, deglaciation, and postglacial drainage across the continent. Our palaeoclimate simulations indicate that this climate envelope remained stationary in western North America throughout the Holocene, but further east it migrated northwards during 11.5–6.0 ka BP. However, palsa extents in eastern North America were restricted from following this moving climate envelope by late deglaciation, drainage and peat initiation. We validated our Holocene simulations against available palaeoecological records and whilst they agree that permafrost peatlands aggraded earliest in western North America, our simulations contest previous suggestions that late permafrost aggradation in central Canada was climatically-driven

    US Fish and Wildlife Service 1979 wetland classification: A review

    Get PDF
    In 1979 the US Fish and Wildlife Service published and adopted a classification of wetlands and deepwater habitats of the United States. The system was designed for use in a national inventory of wetlands. It was intended to be ecologically based, to furnish the mapping units needed for the inventory, and to provide national consistency in terminology and definition. We review the performance of the classification after 13 years of use. The definition of wetland is based on national lists of hydric soils and plants that occur in wetlands. Our experience suggests that wetland classifications must facilitate mapping and inventory because these data gathering functions are essential to management and preservation of the wetland resource, but the definitions and taxa must have ecological basis. The most serious problem faced in construction of the classification was lack of data for many of the diverse wetland types. Review of the performance of the classification suggests that, for the most part, it was successful in accomplishing its objectives, but that problem areas should be corrected and modification could strengthen its utility. The classification, at least in concept, could be applied outside the United States. Experience gained in use of the classification can furnish guidance as to pitfalls to be avoided in the wetland classification process

    Applying Definitions of “Asbestos” to Environmental and “Low-Dose” Exposure Levels and Health Effects, Particularly Malignant Mesothelioma

    Get PDF
    Although asbestos research has been ongoing for decades, this increased knowledge has not led to consensus in many areas of the field. Two such areas of controversy include the specific definitions of asbestos, and limitations in understanding exposure-response relationships for various asbestos types and exposure levels and disease. This document reviews the current regulatory and mineralogical definitions and how variability in these definitions has led to difficulties in the discussion and comparison of both experimental laboratory and human epidemiological studies for asbestos. This review also examines the issues of exposure measurement in both animal and human studies, and discusses the impact of these issues on determination of cause for asbestos-related diseases. Limitations include the lack of detailed characterization and limited quantification of the fibers in most studies. Associated data gaps and research needs are also enumerated in this review

    Aspen in a changing climate

    Get PDF

    New Tetrahedral Sheets in Reyerite

    No full text

    A neutron-diffraction study of hemimorphite

    No full text
    corecore