146 research outputs found

    Epigenetische Regulationsmechanismen in der Herzinsuffizienz

    Get PDF

    Epigenetische Regulationsmechanismen in der Herzinsuffizienz

    Get PDF

    Exploring Digital Transformation’s Impact on Organizational Identity with an Archetype Framework

    Get PDF
    Recently, IS scholars draw attention on the inter-relation between digital transformation and organiza-tional identity. However, little is known about how digital transformation processes affect organizations’ identity change. We assume to grasp this complex phenomenon by distinguishing different manifesta-tions of digital transformation related to organiza-tional structures and modes of value creation, expect-ing each to have distinctive effects on changing or-ganizational identity. We capture these differing ef-fects in an archetype framework as a heuristic for future research

    Effects of face masks on performance and cardiorespiratory response in well-trained athletes

    Get PDF
    Background During the COVID-19 pandemic, compulsory masks became an integral part of outdoor sports such as jogging in crowded areas (e.g. city parks) as well as indoor sports in gyms and sports centers. This study, therefore, aimed to investigate the effects of medical face masks on performance and cardiorespiratory parameters in athletes. Methods In a randomized, cross-over design, 16 well-trained athletes (age 27 ± 7 years, peak oxygen consumption 56.2 ± 5.6 ml kg−1 min−1, maximum performance 5.1 ± 0.5 Watt kg−1) underwent three stepwise incremental exercise tests to exhaustion without mask (NM), with surgical mask (SM) and FFP2 mask (FFP2). Cardiorespiratory and metabolic responses were monitored by spiroergometry and blood lactate (BLa) testing throughout the tests. Results There was a large effect of masks on performance with a significant reduction of maximum performance with SM (355 ± 41 Watt) and FFP2 (364 ± 43 Watt) compared to NM (377 ± 40 Watt), respectively (p < 0.001; ηp2 = 0.50). A large interaction effect with a reduction of both oxygen consumption (p < 0.001; ηp2 = 0.34) and minute ventilation (p < 0.001; ηp2 = 0.39) was observed. At the termination of the test with SM 11 of 16 subjects reported acute dyspnea from the suction of the wet and deformed mask. No difference in performance was observed at the individual anaerobic threshold (p = 0.90). Conclusion Both SM and to a lesser extent FFP2 were associated with reduced maximum performance, minute ventilation, and oxygen consumption. For strenuous anaerobic exercise, an FFP2 mask may be preferred over an SM

    DIGITAL EDUCATION : TO TACKLE CLIMATE CHANGE

    Get PDF
    To achieve long-term sustainability individuals, groups, and organizations need to mitigate climate change and adapt to the new environmental scenarios. Indeed, climate change is a process that cannot be ignored in any way any longer. Not only it is happening everywhere, and the effects are more noticeable every year, but it has also been happening for decades with an impact on every ecosystem of the planet. This means that climate change is a fundamental issue that affects every person, group, and organization. Professionally, we need as much expertise as we can gather. More practitioners are needed with experience in every field to help mitigate climate change as much as possible while facilitating rapid adaptation to a progressively damaging climate change. Climate change is caused by humans and human behavior, even if some issues seem technological and environmental problems, the origin is still human behavior. Therefore, there is a critical need for being able to count on behavioral experts that contribute to explaining current behaviors. Additionally, behavior change experts who are able to motivate individuals, groups, and organizations to engage in mitigation and adaptation behaviors are equally necessary. To achieve this, a more comprehensive range of educational opportunities is needed. This education must be included in vocational training and applied science universities. However, nothing will have an impact as far-reaching as education about climate change for students during their bachelor and master programs. The capacity of highly trained professionals with behavioral change expertise can have a trickling-down effect that will benefit the whole world. Because of how crucial education in climate change is, an urgent need is currently a pressing matter to provide specialized education on how to understand and improve the sustainability behavior of people, groups, and organizations. This need to increase both the amount and quality of sustainability-related education is met with an insufficient amount of education resources being offered. Creating new courses or even programs on this topic is not a realistic possibility for many institutions. In some cases, the development of new content might not be feasible due to local difficulties, and in other cases, climate change might not be a preference whatsoever. Therefore, it is crucial to offer alternatives to institutions that due to factors such as lack of local expertise, different agendas, or the difficulties linked to generating new content cannot offer education on climate change and behavior themselves. This education alternative should be easy to implement and adapt to the specific programs. The most straightforward contribution to facilitating education in climate change at bachelor and master levels is offering online courses that can be imported. Additionally, to maximize the reach of these courses, they should include content that can be learned in a self-guided manner. The PSYCLIC project offers the latest content about climate change and human behavior. This material will be available to be directly imported digitally at any university program. Additionally, it has a modular structure that is self-guided by default. However, the education resource that the PSYCLIC project offers will not make a meaningful impact unless the target community (i.e., institutions that could offer education on the topic of climate change and behavior but do not do so) is eager to use the education resources that the project will offer. To understand if the profile of scholars that the PSYCLIC project has as the target are ready and kin on using what the project will offer, we reached other colleagues to explore the demands and barriers for ready to use digital education material on climate change and behavior.ERASMUS+ / Projektname: Psychology and Climate Change - Digital Education / Projekt Akronym: PSYCLI

    Beaked whales respond to simulated and actual navy sonar

    Get PDF
    This article is distributed under the terms of the Creative Commons Public Domain declaration. The definitive version was published in PLoS One 6 (2011): e17009, doi:10.1371/journal.pone.0017009.Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define disturbance.The research reported here was financially supported by the United States (U.S.) Office of Naval Research (www.onr.navy.mil) Grants N00014-07-10988, N00014-07-11023, N00014-08-10990; the U.S. Strategic Environmental Research and Development Program (www.serdp.org) Grant SI-1539, the Environmental Readiness Division of the U.S. Navy (http://www.navy.mil/local/n45/), the U.S. Chief of Naval Operations Submarine Warfare Division (Undersea Surveillance), the U.S. National Oceanic and Atmospheric Administration (National Marine Fisheries Service, Office of Science and Technology) (http://www.st.nmfs.noaa.gov/), U.S. National Oceanic and Atmospheric Administration Ocean Acoustics Program (http://www.nmfs.noaa.gov/pr/acoustics/), and the Joint Industry Program on Sound and Marine Life of the International Association of Oil and Gas Producers (www.soundandmarinelife.org)

    Meta-Analysis of Mutations in ALOX12B or ALOXE3 Identified in a Large Cohort of 224 Patients

    Get PDF
    The autosomal recessive congenital ichthyoses (ARCI) are a nonsyndromic group of cornification disorders that includes lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. To date mutations in ten genes have been identified to cause ARCI: TGM1, ALOX12B, ALOXE3, NIPAL4, CYP4F22, ABCA12, PNPLA1, CERS3, SDR9C7, and SULT2B1. The main focus of this report is the mutational spectrum of the genes ALOX12B and ALOXE3, which encode the epidermal lipoxygenases arachidonate 12-lipoxygenase, i.e., 12R type (12R-LOX), and the epidermis-type lipoxygenase-3 (eLOX3), respectively. Deficiency of 12R-LOX and eLOX3 disrupts the epidermal barrier function and leads to an abnormal epidermal differentiation. The type and the position of the mutations may influence the ARCI phenotype; most patients present with a mild erythrodermic ichthyosis, and only few individuals show severe erythroderma. To date, 88 pathogenic mutations in ALOX12B and 27 pathogenic mutations in ALOXE3 have been reported in the literature. Here, we presented a large cohort of 224 genetically characterized ARCI patients who carried mutations in these genes. We added 74 novel mutations in ALOX12B and 25 novel mutations in ALOXE3. We investigated the spectrum of mutations in ALOX12B and ALOXE3 in our cohort and additionally in the published mutations, the distribution of these mutations within the gene and gene domains, and potential hotspots and recurrent mutations

    Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider™

    Get PDF
    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle – a glider – equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many endangered marine mammal species

    CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice

    Get PDF
    Group 1 CD1 (CD1a, CD1b, and CD1c)–restricted T cells recognize mycobacterial lipid antigens and are found at higher frequencies in Mycobacterium tuberculosis (Mtb)–infected individuals. However, their role and dynamics during infection remain unknown because of the lack of a suitable small animal model. We have generated human group 1 CD1 transgenic (hCD1Tg) mice that express all three human group 1 CD1 isoforms and support the development of group 1 CD1–restricted T cells with diverse T cell receptor usage. Both mycobacterial infection and immunization with Mtb lipids elicit group 1 CD1–restricted Mtb lipid–specific T cell responses in hCD1Tg mice. In contrast to CD1d-restricted NKT cells, which rapidly respond to initial stimulation but exhibit anergy upon reexposure, group 1 CD1–restricted T cells exhibit delayed primary responses and more rapid secondary responses, similar to conventional T cells. Collectively, our data demonstrate that group 1 CD1–restricted T cells participate in adaptive immune responses upon mycobacterial infection and could serve as targets for the development of novel Mtb vaccines
    corecore