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Abstract: The autosomal recessive congenital ichthyoses (ARCI) are a nonsyndromic group of
cornification disorders that includes lamellar ichthyosis, congenital ichthyosiform erythroderma, and
harlequin ichthyosis. To date mutations in ten genes have been identified to cause ARCI: TGM1,
ALOX12B, ALOXE3, NIPAL4, CYP4F22, ABCA12, PNPLA1, CERS3, SDR9IC7, and SULT2B1. The
main focus of this report is the mutational spectrum of the genes ALOX12B and ALOXE3, which
encode the epidermal lipoxygenases arachidonate 12-lipoxygenase, i.e., 12R type (12R-LOX), and the
epidermis-type lipoxygenase-3 (eLOX3), respectively. Deficiency of 12R-LOX and eLOX3 disrupts
the epidermal barrier function and leads to an abnormal epidermal differentiation. The type and
the position of the mutations may influence the ARCI phenotype; most patients present with a
mild erythrodermic ichthyosis, and only few individuals show severe erythroderma. To date, 88
pathogenic mutations in ALOX12B and 27 pathogenic mutations in ALOXE3 have been reported in
the literature. Here, we presented a large cohort of 224 genetically characterized ARCI patients who
carried mutations in these genes. We added 74 novel mutations in ALOX12B and 25 novel mutations
in ALOXE3. We investigated the spectrum of mutations in ALOX12B and ALOXE3 in our cohort
and additionally in the published mutations, the distribution of these mutations within the gene and
gene domains, and potential hotspots and recurrent mutations.

Keywords: ALOX12B; ALOXE3; ARCI; ichthyosis

1. Introduction

Autosomal recessive congenital ichthyosis (ARCI) comprises a clinically and genet-
ically heterogeneous group of rare disorders of cornification characterized by hyperker-
atosis, scaling of the body, and a variable degree of erythroderma. ARCI is subclassified
into lamellar ichthyosis (LI), congenital ichthyosiform erythroderma (CIE), and harlequin
ichthyosis (HI). Patients with LI often present with large, dark plate-like scales and with
minimal erythema, whereas patients with CIE usually show variable erythroderma and
generalized fine white scaling. Some patients show overlapping phenotypes of LI and CIE.
HI represents the most severe form of ARCI and is a potentially life-threatening condition.
CIE is typically on the milder end of the spectrum. Neonates with ARCI are often born
with a collodion membrane, a parchment-like membrane covering the whole body surface.
This membrane is shed within 1-3 weeks and is followed by presentation of an underlying
LI or CIE. In some cases, either no or only mild signs of ichthyosis persist after the neonatal
or infant period. This condition has been named self-improving collodion ichthyosis (SICI)
and is often associated with mutations in ALOX12B and ALOXE3 [1].

To date, mutations in ten genes have been identified to cause ARCI: TGM1 (MIM
190195) [2], ALOX12B (MIM 603741) [3], ALOXE3 (MIM 607206) [3], NIPAL4/ICHTHYIN
(MIM 609383) [4], CYP4F22 (MIM 611495) [5], ABCA12 (MIM 607800) [6], PNPLA1 (MIM
612121) [7], CERS3 (MIM 615276) [8], SDRIC7 (MIM 609769) [9], and SULT2B1 (MIM
604125) [10]. Mutations in TGM1 are the most common cause for ARCI, followed by
mutations in the two lipoxygenase genes, ALOX12B and ALOXE3 [11]. In this report we
focus on the spectrum, the type, and the position of mutations in both ALOX12B and
ALOXES3 genes.

ARCI is associated with impaired skin barrier function, which is mainly caused
by the inability of mutated keratinocytes to produce or to secrete the skin lipids that
are required for the formation of the cornified cell envelope and for the extracellular
lipid layers in the stratum corneum [12]. ALOX12B and ALOXE3 encode the epidermal
lipoxygenases arachidonate 12-lipoxygenase, i.e., 12R type (12R-LOX), and the epidermis-
type lipoxygenase-3 (eLOX3), respectively. Lipoxygenases (LOXs) are a family of nonheme,
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iron-containing dioxygenases. LOXs catalyze the oxygenation of polyunsaturated fatty acid
substrates that contain (Z,Z)-1,4-pentiadiene structures [13]. Deficiency of 12R-LOX and
eLOX3 disrupts the epidermal barrier function and leads to an abnormal skin development.

The ALOX12B and ALOXE3 proteins have a similar structure that consists of two main
domains: (a) the PLAT (Polycystin-1, Lipoxygenase, x-Toxin) or the LH2 (lipoxygenase
homology) domain, which contains amino acids 2 to 119 in both proteins, and (b) the
lipoxygenase domain, which ranges from amino acid 120 to 701 in ALOX12B and from 120
to 711 in ALOXE3. The PLAT/LH2 domain forms a 3-sandwich containing two 3-sheets
and four p-strands. The function of the PLAT/LH2 domain is to mediate interaction
with lipids or membrane-bound proteins [14]. ALOX12B and ALOXE3 belong to the
same metabolic lipoxygenase pathway, where the product of ALOX12B is the substrate
for ALOXE3.

ALOX12B and ALOXE3 were firstly described as causative genes for ARCI by Jo-
bard et al. [3]. Patients with mutations in ALOX12B or ALOXE3 usually present with a mild
phenotype including fine scaling and mild erythema. However, some patients may present
with very severe erythroderma (personal communication from E.B.). In some patients,
mutations in these genes lead to SICI. In most cases of SICI, mutations in ALOX12B were
found, followed by mutations in ALOXE3 [1,15].

To date, 88 pathogenic mutations in ALOX12B and 27 pathogenic mutations in
ALOXE3 have been reported in ARCI (Human Gene Mutation Database Professional
2020.3). In the present study, we present a large cohort of 224 patients affected with ARCI
carrying mutations in ALOX12B or ALOXE3. We add 74 novel mutations in ALOX12B and
25 novel mutations in ALOXE3. Furthermore, we investigate the quality and spectrum of
mutations, the potential hotspot regions, and the possible correlation of specific mutations
with the phenotype.

2. Materials and Methods

In 224 patients with ARCI, mutations in ALOX12B or ALOXE3 were detected using dif-
ferent sequencing methods, including Sanger sequencing and next-generation sequencing
(NGS). Here, we present the results of the mutation testing for only one affected individual
from each family. Our data show there were 224 patients of the cohort belonging to 223
families, as one patient was homozygous for both ALOX12B and ALOXE3 mutations. This
study was conducted according to the Declaration of Helsinki principles.

In all patients, genomic DNA was isolated from peripheral blood lymphocytes, and
we performed PCR amplification using Sanger sequencing or NGS methods. All coding
exons and flanking intronic sequences of ALOX12B (reference NM_001139.2, GRCh37.p13)
and ALOXE3 reference (NM_021628.2, GRCh37.p13) were analyzed. In general, Sanger
sequencing methods for individual genes were used until 2010-2015, depending on the lab-
oratory; NGS methods through multigene panel testing, either in a targeted way of through
whole-exome sequencing, were applied and mutations validated by Sanger sequencing.
In a large part of the cohort, DNA sequences were enriched by a HaloPlex Custom Kit or
SureSelect Custom Kit (Agilent Technologies, Inc. Santa Clara, CA, USA). Resulting data
were analyzed using an in-house bioinformatics pipeline and the commercial software
SeqNext (JSI medical systems, Ettenheim, Germany).

For in silico analysis we used the following bioinformatics tools: Mutation Taster (
http:/ /www.mutationtaster.org/) [16], PolyPhen-2 (http:/ /genetics.bwh.harvard.edu/p
ph2/) [17], fathmm v2.3 (http:/ /fathmm.biocompute.org.uk/) [18], SIFT (http:/ /sift.jcv
i.org/) [19], Provean v1.1.3 (http://provean.jcvi.org/index.php) [20], NetGene2 v2.4 (
http:/ /www.cbs.dtu.dk/services/NetGene2 /) [21], NNSplice version 0.9 (http://www.fr
uitfly.org/) [22], and SSP v2.1 (https:/ /varseak.bio/, developed by JSI medical systems
GmbH, Ettenheim, Germany).

In addition, the following databases were used: the Genome Aggregation Database
version v2.1.1 (gnomAD; http:/ /gnomad .broadinstitute.org /), HGMD® Professional ver-
sion 2020.3 (http:/ /www.biobase-international.com/product/hgmd), Database of Single-
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Nucleotide Polymorphisms version build 151 (dbSNP; http:/ /www.ncbi.nlm.nih.gov/p
rojects/SNP/), PubMed (http:/ /www.ncbi.nlm.nih.gov/pubmed/), and ClinVar version
December 2020 (https:/ /www.ncbinlm.nih.gov/clinvar/).

Alignments were retrieved from Ensembl 102 using the Eutheria Gen Tree node.
Analysis and visualization was performed with Jalview version 2.11.1.3-j1.8 (https://www.
jalview.org/).

3. Results

A genetic analysis of patients with ichthyosis over a period of 26 years revealed 170
families with mutations in ALOX12B or ALOXE3 in our laboratories; a further 54 families
were contributed by other coauthors within the ERN-Skin network. All patients are listed
in Supplementary Tables S1 and S2. A total of 31 of these pedigrees have already been
published [1,3,23,24]. We found an additional 74 novel mutations in ALOX12B and 25
novel mutations in ALOXE3. All novel mutations are summarized in Table 1. To our
knowledge, these mutations have not been reported in the literature before. Known and
novel mutations were verified by HGMD® Professional 2020.3. The results of prediction
tools and databases for all novel mutations in ALOX12B and ALOXE3 were listed in
Supplementary Tables S3 and S4. Our study increases the total number of known ALOX12B

mutations to 162 and of ALOXE3 mutations to 52.

Table 1. Novel mutations in ALOX12B and ALOXES3.

ALOX12B ALOXE3
DNA Level Protein Level DNA Level Protein Level DNA Level Protein Level
c47C>G p-(Ser16Trp) c.1324C>T p-(Arg442Trp) c.57_63del p-(Asp20Serfs*17)
c47C>T p-(Serl6Leu) ¢.1336_1338del p-(Leud4é6del) c.271G>T p-(Glu91*)
¢.58G>T p-(Asp20Tyr) c.1349G>A p-(Gly450Glu) c.308A>C p-(GIn103Pro)
c.67T>C p-(Ser23Pro) ¢.1369T>C p-(Ser457Pro) c.397A>G p-(Arg133Gly)
¢.195_220del p-(le66Argfs*50) c.1427A>G p-(Tyr476Cys) c.680+1G>A p-? splice site
¢.208_211dup p-(Lys71Thrfs*55) ¢.1495C>T p-(Arg499Cys) c.758del p-(Phe253Serfs*27)
c.297C>A p-(Phe99Leu) ¢.1498G>C p-(Asp500His) c.833A>C p-(Tyr278Ser)
c.299C>T p-(Pro100Leu) ¢.1533-1G>T p-? (splice site) €.923T>C p-(Leu308Pro)
¢.307C>T p-(GIn103*) c.1594G>A p-(Glu532Lys) c.952dup p-(Leu318Profs*58)
¢.325G>T p-(Glu109%) c.1609G>A p-(Val537Met) c.957G>A p-(Glu319=) splice site
c.341G>A p-(Arg114GlIn) c.1634T>G p-(Leub45Arg) c.1031A>C p-(GIn344Pro)
¢.353-2A>G p-? splice site c.1654+1G>A p-? splice site c.1061G>A p-(Trp354*)
c.371A>T p-(Asp124Val) c.1655-7C>A p-? splice site c.1164G>T p-(Trp388Cys)
c.416_417del p-(Ala139Glufs*37) c.1669_1681del p-(Arg558Serfs*2) c.1193C>T p-(Ser398Phe)
¢.526G>A p-(Glul76Lys) c.1676C>T p-(Thr5591le) c.1202T>A p-(Leu401GlIn)
c.698G>A p-(Trp233*) ¢.1694G>C p-(Arg565Pro) c.1246T>C p-(Cys416Arg)
c.734_745del p-(Gly245_Ser248del) c.1732C>T p-(His578Tyr) c.1292dup p-(His431GInfs*90)
c.769C>G p-(His257Asp) c.1742T>G p-(Val581Gly) c.1393-1G>A p.? splice site
c.771_772del p-(His257GInfs*116) c.1787C>T p-(Pro596Leu) c.1786-2A>G p-? splice site
¢.793G>A p-(Gly265Arg) c.1797G>T p-(Met5991le) ¢.1786-63_1807del p.? gross deletion
c.814G>T p-(Val272Phe) c.1829C>T p-(Thr610Ile) ¢.1804dup p-(Met602Asnfs*30)
c.845delinsAA p-(Arg282GInfs*92) c.1859C>A p-(Pro620GIn) c.1812T>A p-(Asn604Lys)
c.864del p-(Val289Serfs*63) c.1861G>T p-(Asp621Tyr) ¢.1937_1944del p-(Ser646Thrfs*13)
¢.893T>C p-(Leu298Pro) c.1871C>T p-(Thré624lle) ¢.1954C>T p-(GIn652%)
€.928-1G>C p-? splice site ¢.1926+2T>G p-? splice site deletion exon 15 p.? large deletion
c.938T>C p-(11e313Thr) c.1936G>A p-(Gly646Arg)
¢.938_941dup p-(Ala316Profs*59) ¢.1937dup p-(His647Thrfs*50)
c.1015C>G p-(Pro339Ala) c.1963G>A p-(Glu655Lys)
c.1018del p-(Leu340Serfs*12) c.1977del p-(Arg660Glyfs*3)
¢.1025T>C p-(Leu342Pro) ¢.2000A>C p-(GIn667Pro)
c.1057C>A p-(Pro353Thr) ¢.2005_2037dup p-(Leu669_Arg679dup)
c.1071+1G>C p-? splice site €.2021_2022dup p-(Asp675Thrfs*21)
c.1127G>A p-(Trp376*) c.2036G>A p-(Arg679His)
c1211T>G p-(Leu404Arg) c.2041A>T p-(Lys681%)
c.1219G>A p-(Glu407Lys) c.2060A>G p-(Tyr687Cys)
c.1258T>G p-(Cys420Gly) c.2064C>G p-(Tyr688*)
c.1309A>T p-(Ile437Phe) c.2094C>A p-(Ser698Arg)
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3.1. Phenotype

Due to the high number of cases, this study did not aim to evaluate every single
genotype—phenotype correlation. We obtained clinical data from almost two-thirds of our
cohort. In many of these patients, we have only little information about the phenotype. We
can confirm, however, that a collodion phenotype at birth, including the self-healing form,
frequently occurs in patients with mutations in ALOX12B or ALOXES3, since a large pro-
portion of our cohort shows these phenotypes. In our patients with available clinical data,
about 76% of the patients with ALOX12B mutations were born with a collodion membrane
(Supplementary Table S1). In ALOXE3, the proportion was about 36% (Supplementary
Table S2). We did not find any association between specific mutations and specific clinical
findings. The predominant clinical findings of most patients support the previous view
of a mild phenotype including fine scaling and mild erythema in patients with ALOX12B
and ALOXE3 mutations. More severe erythroderma phenotypes occur occasionally but
less frequently than milder phenotypes [1,3]. Some patients of our cohort are shown in
Figure 1.

3.2. Spectrum of Mutations in ALOX12B

The most common type of mutations in ALOX12B in our cohort and in the literature
are missense mutations (103 out of 161, corresponding to 64% of all cases), followed by
frameshift mutations (32 out of 161, 20%), splice site mutations (12 out of 161, 7%), and
nonsense mutations (10 out of 161, 6%). Less common types of mutations were a large
deletion (1 out of 161), in frame deletions/insertions (2 out of 161), and a predicted start
loss mutation (1 out of 161), which together represent 3% (Figure 2C).

We analyzed the distribution of the mutations within ALOX12B. We found that mis-
sense mutations occur in both the PLAT/LH2 and the lipoxygenase domain. In the
beginning of the lipoxygenase domain from amino acid 120 to 251 (corresponding to exons
3 to 6), only 7 mutations were found, which is a strikingly smaller number of missense
mutations compared with the rest of the lipoxygenase domain, where significantly more
mutations are present (Figure 2A).

A total of 70 of 103 missense mutations (corresponding to 67%) were found in the
second half of the protein from exon 9 to 15 (corresponding to amino acids 358 to 701)
(Supplementary Table S5). Nonsense, frameshift, and splice site mutations seem to be
evenly distributed throughout ALOX12B. Examination of the conservation of the amino
acids in humans compared to other mammals revealed fewer conserved regions in the
PLAT/LH2 domain and in the initial part of the lipoxygenase domain, including exons 3
to 6.

The large number of cases in this meta-analysis allows for an overview of the distri-
bution of mutated alleles in affected individuals (Figure 2B). Patients carry these alleles
either in a homozygous state or in a compound heterozygous state combined with an-
other mutation in the same gene. The most frequent mutation by far is p.(Tyr521Cys)
(61 out of 282 alleles, corresponding to 22%) followed by p.(Ala597Glu) (12 alleles, 4%)
and p.(Val527Met) (8 alleles, 3%). About 2% of all alleles are the mutations p.(Ser16Leu)
(7 alleles), c.1654+3A>G (7 alleles), p.(Arg432*) (5 alleles), and p.(Arg488His) (5 alleles).
Mutations that occur even more rarely (1 to 4 alleles) represent 63% of all alleles.
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Figure 1. Examples of phenotypes of patients carrying mutations in ALOX12B and ALOXE3.
(A—C): Patient 72 carries the mutations p.(Argl14Trp) and p.(Tyr383Met) in ALOX12B and shows
an erythrodermic skin on the chest (A), scales on the arm and the back (B), and small scales on the
popliteal area (C). (D-F): Patient 29 carries the homozygous mutation p.(Glu91*) in ALOXE3 and
presented with mild general ichthyosis. Patient 29 shows ichthyosis with knuckle pads on the dorsal

sides of the hands (D), fine white scales on the legs (E), and hyperlinearity of the palmar sites of the
hands (F).
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Figure 2. (A,D): Schematic presentation of the distribution of mutations in ALOX12B and ALOXE3. Red bold: novel
mutations. Blue bold: known mutations, found in our cohort. Black, non-bold: known mutations, not found in our cohort.
(B,E): frequency of mutated alleles in ALOX12B and ALOXE3. (C,F): frequency of different types of mutations in ALOX12B
and ALOXES3.
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3.3. Spectrum of Mutations in ALOXE3

In ALOXES3, most frequent mutations are nonsense and frameshift mutations (12 and 8,
respectively), which lead to a predicted premature stop codon and potentially to nonsense
mediated decay (combined, these are 20 out of 52 from our cohort and the literature,
corresponding to 38%), followed by missense mutations (18 out of 52, 35%) and splice site
mutations (10 out of 52, 19%). Three large deletions and one in frame deletion/insertion
mutation were found (4 out of 52, 8%) (Figure 2F).

Compared to ALOX12B, there is no apparent uneven distribution of the mutations
within the gene (Supplementary Table S5). Only 18 missense mutations were found, most
of them are located in the lipoxygenase domain. It is possible that a larger dataset would
reveal a similar pattern as in ALOX12B. Alignment analysis revealed highly conserved
regions at the C-terminal end of the protein from amino acid 579. Compared to ALOX12B,
ALOXES3 has significantly fewer highly conserved regions.

Similar to ALOX12B, we investigated the frequency of mutated alleles in ALOXES3.
The most frequent mutations is p.(Pro630Leu) (67 out of 166 alleles, corresponding to 40%),
followed by p.(Arg234*) (35 alleles, 21%). Mutations that occur considerably less often are
p-(Arg211*), p.(Glu319=), p.(Arg3965er), and ¢.1393-1G>A (each 4 alleles, 2.5%). Mutations
that occur in only 1 to 2 alleles correspond to 29% of all alleles (Figure 2E).

4. Discussion

An analysis of the mutational spectrum of ALOXE3 in our cohort revealed the most
recurrent mutations, p.(Pro630Leu) (40% of all alleles) and p.(Arg234*) (21% of all alleles).
Our large cohort strongly supports the findings of Eckl et al. [25] and Fischer [11], who
described these mutations as hotspot mutations. It is noticeable that both mutations
account for almost two-thirds of all mutated alleles in our cohort. In ALOX12B the mutation
p-(Tyr521Cys) occurs in 22% of all mutated alleles, and thus it occurs significantly more
often than other mutations in this gene. Due to the different ethnic backgrounds of our
patients carrying these mutations, a founder effect can be excluded. Patients from our
cohort carrying ALOX12B mutations came from at least 21 different European and non-
European countries. The mutation p.(Tyr521Cys) was found in patients from 15 different
countries. In ALOXE3, mutations were detected in patients from at least 15 European
and non-European countries. The mutations p.(Pro630Leu) and p.(Arg234*) were found
in patients from 11 and 8 different countries, respectively (Supplementary Tables S1 and
52). Some DNA sequences contain fragile sites that are more prone to mutation. These
sites are often associated with specific dinucleotide or trinucleotide repeats or different
methylation patterns. Furthermore, specific DNA structures can make DNA sequences
more vulnerable to alteration. The DNA repair system can also be weakened in some
sequence regions [26]. The exact mechanism for the occurrence of these hotspot positions
in ALOX12B and ALOXES3 is still unknown. Further investigations are needed to identify
the underlying mechanisms.

The proportion of the types of mutations differs between ALOX12B and ALOXE3. In
ALOX12B, 64% of all known mutations are missense mutations, followed by frameshift
mutations (20%), splice site mutations (7%), and nonsense mutations (6%). As the hotspot
mutations in ALOX12B are missense mutations, the proportion of missense mutations in
patients is significantly larger than 64%. In ALOXE3, however, the proportion of missense
mutations of all 52 known mutations amounts to 35%, followed by nonsense mutations
(23%), splice site mutations (19%), and frameshift mutations (15%). Since the second most
common hotspot mutation is a nonsense mutation, the proportion of mutations with a
predicted premature stop codon in patients is very high. It is not yet clear how these
differences between ALOX12B and ALOXE3 can be explained.

This meta-analysis allows us to better understand the distribution of the mutations in
ALOX12B and ALOXE3. In ALOX12B, 67% of all mutations were detected in the second
part of the protein from exon 9 (from amino acid 358). At the beginning of the lipoxygenase
domain from exon 3 to 6 (corresponding to amino acids 118 to 251), very few mutations
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were found. The cause of the uneven distribution of mutations within the gene is not yet
clear. Compared to gnomAD, missense variants in this database are equally distributed
within the gene (Supplementary Table S5). We speculate that some regions are much better
conserved because they have important functional meaning. Less well-conserved regions
may allow for changes that do not cause disease. Given the similar structure of ALOX12B
and ALOXES3, it is surprising that we did not observe an uneven distribution in ALOXE3
as we did in ALOX12B. However, the number of mutations in ALOXE3 is still relatively
low compared to ALOX12B, and therefore a similar pattern might emerge with increasing
numbers of mutations to be identified in the future.

Analysis of the conservation of the amino acids in both proteins reveals highly con-
served regions in a large part of ALOX12B, while only few regions are less conserved. Our
results indicate a correlation between an increased occurrence of mutations and highly
conserved regions. This can be explained by the fact that variants occurring at evolutionar-
ily conserved sites are generally more deleterious compared to variants at nonconserved
positions. However, ALOXE3 has significantly fewer highly conserved regions compared to
ALOX12B. Highly conserved regions can be found in the lipoxygenase domain, particularly
at the end of the protein. Our results show that mutations in ALOX12B can be found
significantly more often than in ALOXE3. It can be argued that the stronger conservation
of amino acids in ALOX12B can explain the higher incidence of mutations in ALOX12B.

We obtained clinical data from almost two-thirds of our cohort, with a partial contain-
ing little information about the phenotype. We did not, however, find any indication for the
correlation of specific mutations with phenotypes. Patients in our cohort were often born
with a collodion membrane. In patients with obtained clinical data, a collodion phenotype
occurred more often in patients with ALOX12B mutations (76%) compared to ALOXE3
mutations (36%). This is in accordance with the findings of Simpson et al. [27], who found
a collodion phenotype at birth in 71% of the ALOX12B cases and in 45% of the ALOXE3
cases. Furthermore, we found a SICI phenotype in both ALOX12B and ALOXES3 cases; this
confirms the findings of Harting et al. [15] and Vahlquist et al. [1], who described mutations
in TGM1, ALOX12B, and ALOXE3 as a common cause of SICI.

Our study strongly expands the mutational spectrum in ALOX12B and ALOXE3 and
gives insights into the distribution of mutations within the genes and the occurrence and
frequency of hotspot mutations. Further analyses can investigate the molecular genetic
causes for the development of hotspot regions in these genes, function of the proteins and
domains, and possible genotype-phenotype interactions.
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