11 research outputs found

    Cereal yield gaps across Europe

    Get PDF
    peer-reviewedEurope accounts for around 20% of the global cereal production and is a net exporter of ca. 15% of that production. Increasing global demand for cereals justifies questions as to where and by how much Europe’s production can be increased to meet future global market demands, and how much additional nitrogen (N) crops would require. The latter is important as environmental concern and legislation are equally important as production aims in Europe. Here, we used a country-by-country, bottom-up approach to establish statistical estimates of actual grain yield, and compare these to modelled estimates of potential yields for either irrigated or rainfed conditions. In this way, we identified the yield gaps and the opportunities for increased cereal production for wheat, barley and maize, which represent 90% of the cereals grown in Europe. The combined mean annual yield gap of wheat, barley, maize was 239 Mt, or 42% of the yield potential. The national yield gaps ranged between 10 and 70%, with small gaps in many north-western European countries, and large gaps in eastern and south-western Europe. Yield gaps for rainfed and irrigated maize were consistently lower than those of wheat and barley. If the yield gaps of maize, wheat and barley would be reduced from 42% to 20% of potential yields, this would increase annual cereal production by 128 Mt (39%). Potential for higher cereal production exists predominantly in Eastern Europe, and half of Europe’s potential increase is located in Ukraine, Romania and Poland. Unlocking the identified potential for production growth requires a substantial increase of the crop N uptake of 4.8 Mt. Across Europe, the average N uptake gaps, to achieve 80% of the yield potential, were 87, 77 and 43 kg N ha−1 for wheat, barley and maize, respectively. Emphasis on increasing the N use efficiency is necessary to minimize the need for additional N inputs. Whether yield gap reduction is desirable and feasible is a matter of balancing Europe’s role in global food security, farm economic objectives and environmental targets.We received financial contributions from the strategic investment funds (IPOP) of Wageningen University & Research, Bill & Melinda Gates Foundation, MACSUR under EU FACCE-JPI which was funded through several national contributions, and TempAg (http://tempag.net/)

    Author Correction:Feeding efficiency gains can increase the greenhouse gas mitigation potential of the Tanzanian dairy sector (Scientific Reports, (2021), 11, 1, (4190), 10.1038/s41598-021-83475-8)

    No full text
    The original version of this Article omitted the Acknowledgements section. The Acknowledgements section now reads: “This research was in part funded by the IFAD project “Greening livestock: Incentive-based interventions for reducing the climate impact of livestock production in East Africa”, as a contribution to the CGIAR program on Climate Change, Agriculture and Food Security (CCAFS).” The original Article has been corrected

    Coupled biophysical and decision-making processes in grassland systems in East African savannahs – A modelling framework

    No full text
    <p>Increasing livestock densities on limited grazing areas in African savannahs lead to resource degradation through overgrazing, aggravated by drought. Assessing herd management strategies over longer periods at landscape scale is important to propose options for sustainable land use. This requires an understanding of processes related to hydrology, nutrient cycling, herd movement, pasture degradation, and animal resilience that involve dynamic soil-plant-animal interactions and human decisions about stocking rates, livestock purchases and sales.</p><p>We present the coupled model system MPMAS-LUCIA-LIVSIM (MLL), the combination of a spatially explicit agent-based model for human decision-making (MPMAS), a spatially distributed landscape model for water flows, nutrient cycles and plant growth (LUCIA), and a herd model (LIVSIM) representing grazing, body weight, nutrition and excreta of individual animals. MLL represents daily vegetation growth in response to grazing and organic inputs, monthly animal performance influenced by forage availability and quality, and herders' management in response to resource status. New modules for selective grazing, resprouting of pasture, herd movement and model coupling were developed for MLL.</p><p>The test case of a pastoral system in the Ethiopian Borana region demonstrates the capabilities of MLL to simulate key soil-plant-animal-human interactions under climate-related management scenarios with varying access to grazing land, changing cattle prices and different spending / saving behaviour of herders. 20-year simulations showed the negative impact of consecutive drought years on vegetation biomass, on herd development and movement and how reserving grazing areas for dry seasons could mitigate overgrazing and improve income. Seasonality and drought response of vegetation growth, selective grazing of different plant parts, resprouting after grazing, calving intervals, milk yields and lactation in response to forage supply and quality as well as herder reactions to shocks were plausibly represented.</p><p>Building upon this successful proof-of-concept, MLL can be used to identify robust management options for improved grazing systems in savannahs in follow-up research.</p&gt

    Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction

    No full text

    Cereal yield gaps across Europe

    No full text
    Europe accounts for around 20% of the global cereal production and is a net exporter of ca. 15% of that production. Increasing global demand for cereals justifies questions as to where and by how much Europe’s production can be increased to meet future global market demands, and how much additional nitrogen (N) crops would require. The latter is important as environmental concern and legislation are equally important as production aims in Europe. Here, we used a country-by-country, bottom-up approach to establish statistical estimates of actual grain yield, and compare these to modelled estimates of potential yields for either irrigated or rainfed conditions. In this way, we identified the yield gaps and the opportunities for increased cereal production for wheat, barley and maize, which represent 90% of the cereals grown in Europe. The combined mean annual yield gap of wheat, barley, maize was 239 Mt, or 42% of the yield potential. The national yield gaps ranged between 10 and 70%, with small gaps in many north-western European countries, and large gaps in eastern and south-western Europe. Yield gaps for rainfed and irrigated maize were consistently lower than those of wheat and barley. If the yield gaps of maize, wheat and barley would be reduced from 42% to 20% of potential yields, this would increase annual cereal production by 128 Mt (39%). Potential for higher cereal production exists predominantly in Eastern Europe, and half of Europe’s potential increase is located in Ukraine, Romania and Poland. Unlocking the identified potential for production growth requires a substantial increase of the crop N uptake of 4.8 Mt. Across Europe, the average N uptake gaps, to achieve 80% of the yield potential, were 87, 77 and 43 kg N ha−1 for wheat, barley and maize, respectively. Emphasis on increasing the N use efficiency is necessary to minimize the need for additional N inputs. Whether yield gap reduction is desirable and feasible is a matter of balancing Europe’s role in global food security, farm economic objectives and environmental targets.status: publishe

    Cereal yield gaps across Europe

    No full text
    Europe accounts for around 20% of the global cereal production and is a net exporter of ca. 15% of that production. Increasing global demand for cereals justifies questions as to where and by how much Europe’s production can be increased to meet future global market demands, and how much additional nitrogen (N) crops would require. The latter is important as environmental concern and legislation are equally important as production aims in Europe. Here, we used a country-by-country, bottom-up approach to establish statistical estimates of actual grain yield, and compare these to modelled estimates of potential yields for either irrigated or rainfed conditions. In this way, we identified the yield gaps and the opportunities for increased cereal production for wheat, barley and maize, which represent 90% of the cereals grown in Europe. The combined mean annual yield gap of wheat, barley, maize was 239 Mt, or 42% of the yield potential. The national yield gaps ranged between 10 and 70%, with small gaps in many north-western European countries, and large gaps in eastern and south-western Europe. Yield gaps for rainfed and irrigated maize were consistently lower than those of wheat and barley. If the yield gaps of maize, wheat and barley would be reduced from 42% to 20% of potential yields, this would increase annual cereal production by 128 Mt (39%). Potential for higher cereal production exists predominantly in Eastern Europe, and half of Europe’s potential increase is located in Ukraine, Romania and Poland. Unlocking the identified potential for production growth requires a substantial increase of the crop N uptake of 4.8 Mt. Across Europe, the average N uptake gaps, to achieve 80% of the yield potential, were 87, 77 and 43 kg N ha−1 for wheat, barley and maize, respectively. Emphasis on increasing the N use efficiency is necessary to minimize the need for additional N inputs. Whether yield gap reduction is desirable and feasible is a matter of balancing Europe’s role in global food security, farm economic objectives and environmental targets
    corecore