81 research outputs found

    Evolution of the electric fields induced in high intensity laser-matter interactions

    Full text link
    Multi MeV protons \cite{snavely2000intense} and heavier ions are emitted by thin foils irradiated by high-intensity lasers, due to the huge accelerating fields, up to several teraelectronvolt per meter, at sub-picosecond timescale \cite{dubois2014target}. The evolution of these huge fields is not well understood till today. Here we report, for the first time, direct and temporally resolved measurements of the electric fields produced by the interaction of a short-pulse high-intensity laser with solid targets. The results, obtained with a sub-100100 fs temporal diagnostics, show that such fields build-up in few hundreds of femtoseconds and lasts after several picoseconds

    Recent studies on single-shot diagnostics for plasma accelerators at SPARC_LAB

    Full text link
    Plasma wakefield acceleration is the most promising acceleration technique for compact and cheap accelerators, thanks to the high accelerating gradients achievable. Nevertheless, this approach still suffers of shot-to-shot instabilities, mostly related to experimental parameters fluctuations. Therefore, the use of single shot diagnostics is needed to properly understand the acceleration mechanism. In this work, we present two diagnostics to probe electron beams from laser-plasma interactions, one relying on Electro Optical Sampling (EOS) for laser-solid matter interactions, the other one based on Optical Transition Radiation (OTR) for single shot measurements of the transverse emittance of plasma accelerated electron beams, both developed at the SPARC_LAB Test Facility

    EuPRAXIA - A compact, cost-efficient particle and radiation source

    Get PDF
    Plasma accelerators present one of the most suitable candidates for the development of more compact particle acceleration technologies, yet they still lag behind radiofrequency (RF)-based devices when it comes to beam quality, control, stability and power efficiency. The Horizon 2020-funded project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") aims to overcome the first three of these hurdles by developing a conceptual design for a first international user facility based on plasma acceleration. In this paper we report on the main features, simulation studies and potential applications of this future research infrastructure

    Status of the Horizon 2020 EuPRAXIA conceptual design study

    Get PDF
    The Horizon 2020 project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to free-electron laser pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for high-energy physics detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure

    Horizon 2020 EuPRAXIA design study

    Get PDF

    DNA polymorphism and selection at the bindin locus in three Strongylocentrotus sp. (Echinoidea)

    Full text link

    Horizon 2020 EuPRAXIA design study

    Get PDF
    The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020

    Status of the Horizon 2020 EuPRAXIA conceptual design study

    Get PDF
    The Horizon 2020 project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to free-electron laser pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for high-energy physics detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure

    Erratum to: EuPRAXIA Conceptual Design Report – Eur. Phys. J. Special Topics 229, 3675-4284 (2020), https://doi.org/10.1140/epjst/e2020-000127-8

    Get PDF
    International audienceThe online version of the original article can be found at http://https://doi.org/10.1140/epjst/e2020-000127-8</A
    • …
    corecore