519 research outputs found
Practical Layout-Aware Analog/Mixed-Signal Design Automation with Bayesian Neural Networks
The high simulation cost has been a bottleneck of practical
analog/mixed-signal design automation. Many learning-based algorithms require
thousands of simulated data points, which is impractical for expensive to
simulate circuits. We propose a learning-based algorithm that can be trained
using a small amount of data and, therefore, scalable to tasks with expensive
simulations. Our efficient algorithm solves the post-layout performance
optimization problem where simulations are known to be expensive. Our
comprehensive study also solves the schematic-level sizing problem. For
efficient optimization, we utilize Bayesian Neural Networks as a regression
model to approximate circuit performance. For layout-aware optimization, we
handle the problem as a multi-fidelity optimization problem and improve
efficiency by exploiting the correlations from cheaper evaluations. We present
three test cases to demonstrate the efficiency of our algorithms. Our tests
prove that the proposed approach is more efficient than conventional baselines
and state-of-the-art algorithms.Comment: Accepted to the 42nd International Conference on Computer-Aided
Design (ICCAD 2023); 8 pages, 8 figure
TAG: Learning Circuit Spatial Embedding From Layouts
Analog and mixed-signal (AMS) circuit designs still rely on human design
expertise. Machine learning has been assisting circuit design automation by
replacing human experience with artificial intelligence. This paper presents
TAG, a new paradigm of learning the circuit representation from layouts
leveraging text, self-attention and graph. The embedding network model learns
spatial information without manual labeling. We introduce text embedding and a
self-attention mechanism to AMS circuit learning. Experimental results
demonstrate the ability to predict layout distances between instances with
industrial FinFET technology benchmarks. The effectiveness of the circuit
representation is verified by showing the transferability to three other
learning tasks with limited data in the case studies: layout matching
prediction, wirelength estimation, and net parasitic capacitance prediction.Comment: Accepted by ICCAD 202
Cancer-associated exportin-6 upregulation inhibits the transcriptionally repressive and anticancer effects of nuclear profilin-1
Aberrant expression of nuclear transporters and deregulated subcellular localization of their cargo proteins are emerging as drivers and therapeutic targets of cancer. Here, we present evidence that the nuclear exporter exportin-6 and its cargo profilin-1 constitute a functionally important and frequently deregulated axis in cancer. Exportin-6 upregulation occurs in numerous cancer types and is associated with poor patient survival. Reducing exportin-6 level in breast cancer cells triggers antitumor effects by accumulating nuclear profilin-1. Mechanistically, nuclear profilin-1 interacts with eleven-nineteen-leukemia protein (ENL) within the super elongation complex (SEC) and inhibits the ability of the SEC to drive transcription of numerous pro-cancer genes including MYC. XPO6 and MYC are positively correlated across diverse cancer types including breast cancer. Therapeutically, exportin-6 loss sensitizes breast cancer cells to the bromodomain and extra-terminal (BET) inhibitor JQ1. Thus, exportin-6 upregulation is a previously unrecognized cancer driver event by spatially inhibiting nuclear profilin-1 as a tumor suppressor
PRMT3-Mediated Arginine Methylation of IGF2BP1 Promotes Oxaliplatin Resistance in Liver Cancer
Although oxaliplatin-based chemotherapy has been effective in the treatment of hepatocellular carcinoma (HCC), primary or acquired resistance to oxaliplatin remains a major challenge in the clinic. Through functional screening using CRISPR/Cas9 activation library, transcriptomic profiling of clinical samples, and functional validation in vitro and in vivo, we identify PRMT3 as a key driver of oxaliplatin resistance. Mechanistically, PRMT3-mediated oxaliplatin-resistance is in part dependent on the methylation of IGF2BP1 at R452, which is critical for the function of IGF2BP1 in stabilizing the mRNA of HEG1, an effector of PRMT3-IGF2BP1 axis. Also, PRMT3 overexpression may serve as a biomarker for oxaliplatin resistance in HCC patients. Collectively, our study defines the PRTM3-IGF2BP1-HEG1 axis as important regulators and therapeutic targets in oxaliplatin-resistance and suggests the potential to use PRMT3 expression level in pretreatment biopsy as a biomarker for oxaliplatin-resistance in HCC patients
Characterization of an interplay between a Mycobacterium tuberculosis MazF homolog, Rv1495 and its sole DNA topoisomerase I
The MazEF systems are thought to contribute to the capacity for long-term dormancy observed in the human pathogen, Mycobacterium tuberculosis. However, except for their functions as mRNA interferases, little is known regarding any additional cellular functions of these systems in the pathogen. In the present study, we observed a negative interplay between MazF protein Rv1495 and the sole M. tuberculosis DNA topoisomerase I (MtbTopA) with respect to protein functions. Through its C-terminal domain, MtbTopA physically interacted with and inhibited the mRNA cleavage activity of Rv1495. Rv1495, in turn, inhibited the DNA cleavage activity of MtbTopA as well as its function of relaxation of supercoiled DNA. An N-terminus fragment of Rv1495, designated Rv1495-N(29-56), lost mRNA cleavage activity, but retained a significant physical interaction and inhibitory effect on TopA proteins from both M. tuberculosis and M. smegmatis. This fragment, although less effective than the full-length protein, was able to inhibit mycobacterial growth when expressed through a recombinant plasmid in M. smegmatis. The Rv1495 physically interacted with the M. smegmatis TopA both in vitro and in vivo. Our findings imply that MazEF systems can affect bacterial survival by a novel mechanism that allows direct modulation of M. tuberculosis topoisomerase I
The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation
© 2014 The Authors Journal compilation. ©2014 Biochemical Society.This is an open access article that is freely available in ORE or from the publisher's website. Please cite the published version.Published by Portland Press on behalf of
the Biochemical SocietyTA (toxin-antitoxin) systems are widely distributed amongst bacteria and are associated with the formation of antibiotic tolerant (persister) cells that may have involvement in chronic and recurrent disease. We show that overexpression of the Burkholderia pseudomallei HicA toxin causes growth arrest and increases the number of persister cells tolerant to ciprofloxacin or ceftazidime. Furthermore, our data show that persistence towards ciprofloxacin or ceftazidime can be differentially modulated depending on the level of induction of HicA expression. Deleting the hicAB locus from B. pseudomallei K96243 significantly reduced persister cell frequencies following exposure to ciprofloxacin, but not ceftazidime. The structure of HicA(H24A) was solved by NMR and forms a dsRBD-like (dsRNA-binding domain-like) fold, composed of a triple-stranded β-sheet, with two helices packed against one face. The surface of the protein is highly positively charged indicative of an RNA-binding protein and His24 and Gly22 were functionality important residues. This is the first study demonstrating a role for the HicAB system in bacterial persistence and the first structure of a HicA protein that has been experimentally characterized.Wellcome Trus
Key features of the two-intron Saccharomyces cerevisiae gene SUS1 contribute to its alternative splicing
Alternative pre-mRNA splicing allows dramatic expansion of the eukaryotic proteome and facilitates cellular response to changes in environmental conditions. The Saccharomyces cerevisiae gene SUS1, which encodes a protein involved in mRNA export and histone H2B deubiquitination, contains two introns; non-canonical sequences in the first intron contribute to its retention, a common form of alternative splicing in plants and fungi. Here we show that the pattern of SUS1 splicing changes in response to environmental change such as temperature elevation, and the retained intron product is subject to nonsense-mediated decay. The activities of different splicing factors determine the pattern of SUS1 splicing, including intron retention and exon skipping. Unexpectedly, removal of the 3′ intron is affected by splicing of the upstream intron, suggesting that cross-exon interactions influence intron removal. Production of different SUS1 isoforms is important for cellular function, as we find that the temperature sensitivity and histone H2B deubiquitination defects observed in sus1Δ cells are only partially suppressed by SUS1 cDNA, but SUS1 that is able to undergo splicing complements these phenotypes. These data illustrate a role for S. cerevisiae alternative splicing in histone modification and cellular function and reveal important mechanisms for splicing of yeast genes containing multiple introns
- …