13 research outputs found

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys

    A Change Detection Method Based on Multi-Scale Adaptive Convolution Kernel Network and Multimodal Conditional Random Field for Multi-Temporal Multispectral Images

    No full text
    Multispectral image change detection is an important application in the field of remote sensing. Multispectral images usually contain many complex scenes, such as ground objects with diverse scales and proportions, so the change detection task expects the feature extractor is superior in adaptive multi-scale feature learning. To address the above-mentioned problems, a multispectral image change detection method based on multi-scale adaptive kernel network and multimodal conditional random field (MSAK-Net-MCRF) is proposed. The multi-scale adaptive kernel network (MSAK-Net) extends the encoding path of the U-Net, and designs a weight-sharing bilateral encoding path, which simultaneously extracts independent features of bi-temporal multispectral images without introducing additional parameters. A selective convolution kernel block (SCKB) that can adaptively assign weights is designed and embedded in the encoding path of MSAK-Net to extract multi-scale features in images. MSAK-Net retains the skip connections in the U-Net, and embeds an upsampling module (UM) based on the attention mechanism in the decoding path, which can give the feature map a better expression of change information in both the channel dimension and the spatial dimension. Finally, the multimodal conditional random field (MCRF) is used to smooth the detection results of the MSAK-Net. Experimental results on two public multispectral datasets indicate the effectiveness and robustness of the proposed method when compared with other state-of-the-art methods

    Prediction Model for Daily Reference Crop Evapotranspiration Based on Hybrid Algorithm in Semi-Arid Regions of China

    No full text
    The accurate estimation of reference crop evapotranspiration (ETO) plays an important role in guiding regional water resource management and crop water content research. In order to improve the accuracy of ETO prediction in regions with missing data, this study used the partial correlation analysis method to select factors that have a large impact on ETO as input combinations to construct ETO estimation models for typical stations in semi-arid regions of China. A biological heuristic optimization algorithm (Golden Eagle optimization algorithm (GEO) and Sparrow optimization algorithm (SSA)) and Extreme Learning Machine model (ELM) were combined to improve the estimation accuracy. The results showed that Ra was the primary factor affecting the ETO model, with an importance range of 0.187–0.566. Compared with the independent ELM model, the hybrid model has higher accuracy and stability. The estimated value of the SSA-ELM model under five-factor input condition (Ra, RH, Tmax, Tmin, U2) is closest to the standard value calculated by FAO56 PM: RMSE = 0.067–0.085, R2 = 0.998–0.999, MAE = 0.050–0.066 and NSE = 0.998–0.999. In general, the combination of a partial correlation analysis algorithm and a hybrid model can be used to estimate ETO with high accuracy under the condition of reducing input factors. Use of the first five factors extracted from the partial correlation analysis algorithm as input to build an ETO estimation model based on SSA-ELM in China’s semi-arid regions is recommended, which can also provide a reference for ETO estimation in similar regions

    A Change Detection Method Based on Multi-Scale Adaptive Convolution Kernel Network and Multimodal Conditional Random Field for Multi-Temporal Multispectral Images

    No full text
    Multispectral image change detection is an important application in the field of remote sensing. Multispectral images usually contain many complex scenes, such as ground objects with diverse scales and proportions, so the change detection task expects the feature extractor is superior in adaptive multi-scale feature learning. To address the above-mentioned problems, a multispectral image change detection method based on multi-scale adaptive kernel network and multimodal conditional random field (MSAK-Net-MCRF) is proposed. The multi-scale adaptive kernel network (MSAK-Net) extends the encoding path of the U-Net, and designs a weight-sharing bilateral encoding path, which simultaneously extracts independent features of bi-temporal multispectral images without introducing additional parameters. A selective convolution kernel block (SCKB) that can adaptively assign weights is designed and embedded in the encoding path of MSAK-Net to extract multi-scale features in images. MSAK-Net retains the skip connections in the U-Net, and embeds an upsampling module (UM) based on the attention mechanism in the decoding path, which can give the feature map a better expression of change information in both the channel dimension and the spatial dimension. Finally, the multimodal conditional random field (MCRF) is used to smooth the detection results of the MSAK-Net. Experimental results on two public multispectral datasets indicate the effectiveness and robustness of the proposed method when compared with other state-of-the-art methods

    Prediction Model for Daily Reference Crop Evapotranspiration Based on Hybrid Algorithm in Semi-Arid Regions of China

    No full text
    The accurate estimation of reference crop evapotranspiration (ETO) plays an important role in guiding regional water resource management and crop water content research. In order to improve the accuracy of ETO prediction in regions with missing data, this study used the partial correlation analysis method to select factors that have a large impact on ETO as input combinations to construct ETO estimation models for typical stations in semi-arid regions of China. A biological heuristic optimization algorithm (Golden Eagle optimization algorithm (GEO) and Sparrow optimization algorithm (SSA)) and Extreme Learning Machine model (ELM) were combined to improve the estimation accuracy. The results showed that Ra was the primary factor affecting the ETO model, with an importance range of 0.187–0.566. Compared with the independent ELM model, the hybrid model has higher accuracy and stability. The estimated value of the SSA-ELM model under five-factor input condition (Ra, RH, Tmax, Tmin, U2) is closest to the standard value calculated by FAO56 PM: RMSE = 0.067–0.085, R2 = 0.998–0.999, MAE = 0.050–0.066 and NSE = 0.998–0.999. In general, the combination of a partial correlation analysis algorithm and a hybrid model can be used to estimate ETO with high accuracy under the condition of reducing input factors. Use of the first five factors extracted from the partial correlation analysis algorithm as input to build an ETO estimation model based on SSA-ELM in China’s semi-arid regions is recommended, which can also provide a reference for ETO estimation in similar regions

    Loss of plant functional groups impacts soil carbon flow by changing multitrophic interactions within soil micro-food webs

    No full text
    The ecological linkage between above- and belowground parts of the terrestrial ecosystem is of interest to ecological and management fields. However, the knowledge on how the loss of plant functional groups impacts multitrophic interactions across soil biota and associated ecological functioning knowledge is lacking. This study aimed to evaluate responses of soil nematode communities to PFG (Gramineae, Cyperaceae, Leguminosae, and other Forbs) identity and richness loss after 9 years by comparing 15 treatments. Specifically, the loss of PFG richness significantly decreased carbon biomass and the abundance of bacterivores and negatively affected footprints of bacterivores and omnivore-predators (OP), leading to a decline in the enrichment and structure footprints. The response of nematode community structure and functional composition at different trophic levels to PFG richness loss varied with PFG identity. Gramineae removal reduced the community structural footprint positively associated with the biomass carbon and footprint of OP, suggesting carbon and energy enrichment are likely to be lower in soil micro-food webs. Although the removal of Cyperaceae reduced carbon biomass and the footprint of bacterivores, it did not cause significant shifts in carbon and energy enrichment and structural footprints in the soil food web, similar to the other two PFGs. Notably, Gramineae strongly controlled carbon and energy enrichment regulations in soil micro-food webs than other PFGs. The present study highlights the key role and influence of PFG richness and identification on food web ecosystem services. It provides a basis for the development of sustainable strategies for grazed alpine meadow ecosystem's management
    corecore