12 research outputs found

    The Dynamics of Tsunamigenic Acoustic-Gravity Waves and Bathymetry Effect

    Get PDF
    The investigation of atmospheric tsunamigenic acoustic and gravity wave (TAGW) dynamics, from the ocean surface to the thermosphere, is performed through the numerical computations of the 3D compressible nonlinear Navier-Stokes equations. Tsunami propagation is first simulated using a nonlinear shallow water model, which incorporates instantaneous or temporal evolutions of initial tsunami distributions (ITD). Surface dynamics are then imposed as a boundary condition to excite TAGWs into the atmosphere from the ground level. We perform a case study of a large tsunami associated with the 2011 M9.1 Tohuku-Oki earthquake, and parametric studies with simplified and demonstrative bathymetry and ITD. Our results demonstrate that TAGW propagation, controlled by the atmospheric state, can evolve nonlinearly and lead to wave self-acceleration effects and instabilities, followed by the excitation of secondary acoustic-gravity waves (SAGWs), spanning a broad frequency range. The variations of the ocean depth result in a change of tsunami characteristics and subsequent tilt of the TAGW packet, as the wave’s intrinsic frequency spectrum is varied. In addition, focusing of tsunamis and their interactions with seamounts and islands may result in localized enhancements of TAGWs, which further indicates the crucial role of bathymetry variations. Along with SAGWs, leading long-period phases of the TAGW packet propagate ahead of the tsunami wavefront and thus can be observed prior to the tsunami arrival. Our modeling results suggest that TAGWs from large tsunamis can drive detectable and quantifiable perturbations in the upper atmosphere under a wide range of scenarios and uncover new challenges and opportunities for their observations

    Volumetric Reconstruction of Ionospheric Electric Currents From Tri-Static Incoherent Scatter Radar Measurements

    Get PDF
    We present a new technique for the upcoming tri-static incoherent scatter radar system EISCAT 3D (E3D) to perform a volumetric reconstruction of the 3D ionospheric electric current density vector field, focusing on the feasibility of the E3D system. The input to our volumetric reconstruction technique are estimates of the 3D current density perpendicular to the main magnetic field, j⊄\mathbf{j} \perp, and its co-variance, to be obtained from E3D observations based on two main assumptions: 1) Ions fully magnetised above the EE region, set to 200 km here. 2) Electrons fully magnetised above the base of our domain, set to 90 km. In this way, j⊄\mathbf{j} \perp estimates are obtained without assumptions about the neutral wind field, allowing it to be subsequently determined. The volumetric reconstruction of the full 3D current density is implemented as vertically coupled horizontal layers represented by Spherical Elementary Current Systems with a built-in current continuity constraint. We demonstrate that our technique is able to retrieve the three dimensional nature of the currents in our idealised setup, taken from a simulation of an active auroral ionosphere using the Geospace Environment Model of Ion-Neutral Interactions (GEMINI). The vertical current is typically less constrained than the horizontal, but we outline strategies for improvement by utilising additional data sources in the inversion. The ability to reconstruct the neutral wind field perpendicular to the magnetic field in the EE region is demonstrated to mostly be within ±50\pm 50 m/s in a limited region above the radar system in our setup

    Transient Ionospheric Upflow Driven by Poleward Moving Auroral forms Observed During the Rocket Experiment for Neutral Upwelling 2 (RENU2) Campaign

    No full text
    This study examines cumulative effects of a series of poleward moving auroral forms on ion upflow and downflow. These effects are investigated using an ionospheric model with inputs derived from the Rocket Experiment for Neutral Upwelling 2 (RENU2) sounding rocket campaign. Auroral precipitation inputs are constrained by all‐sky imager brightness values resulting in significant latitudinal structuring in simulated ionospheric upflows due to transient forcing. For contrast, a case with steady forcing generates almost double the O+ upflow transport through 1,000 km when compared to poleward moving auroral form‐like structures. At high altitudes, model results show a spread in upflow response time dependent on ion mass, with molecular ions responding slower than atomic ions by several minutes. While the modeled auroral precipitation is not strong enough to accelerate ions to escape velocities, source populations available for higher‐altitude energization processes are greatly impacted by variable forcing exhibited by the RENU2 event

    A far-ultraviolet–driven photoevaporation flow observed in a protoplanetary disk

    No full text
    International audienceMost low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula. Emission lines are detected from the PDR; modeling their kinematics and excitation allowed us to constrain the physical conditions within the gas. We quantified the mass-loss rate induced by the FUV irradiation and found that it is sufficient to remove gas from the disk in less than a million years. This is rapid enough to affect giant planet formation in the disk

    PDRs4All: A JWST Early Release Science Program on radiative feedback from massive stars

    Get PDF
    Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the Universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter- and circumstellar media including diffuse clouds, proto-planetary disks and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template datasets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template datasets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.Comment: Submitted to PAS

    A longitudinal resource for population neuroscience of school-age children and adolescents in China

    No full text
    During the past decade, cognitive neuroscience has been calling for population diversity to address the challenge of validity and generalizability, ushering in a new era of population neuroscience. The developing Chinese Color Nest Project (devCCNP, 2013-2022), the first ten-year stage of the lifespan CCNP (2013-2032), is a two-stages project focusing on brain-mind development. The project aims to create and share a large-scale, longitudinal and multimodal dataset of typically developing children and adolescents (ages 6.0-17.9 at enrolment) in the Chinese population. The devCCNP houses not only phenotypes measured by demographic, biophysical, psychological and behavioural, cognitive, affective, and ocular-tracking assessments but also neurotypes measured with magnetic resonance imaging (MRI) of brain morphometry, resting-state function, naturalistic viewing function and diffusion structure. This Data Descriptor introduces the first data release of devCCNP including a total of 864 visits from 479 participants. Herein, we provided details of the experimental design, sampling strategies, and technical validation of the devCCNP resource. We demonstrate and discuss the potential of a multicohort longitudinal design to depict normative brain growth curves from the perspective of developmental population neuroscience. The devCCNP resource is shared as part of the "Chinese Data-sharing Warehouse for In-vivo Imaging Brain" in the Chinese Color Nest Project (CCNP) - Lifespan Brain-Mind Development Data Community (https://ccnp.scidb.cn) at the Science Data Bank

    Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores

    Get PDF
    Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease

    Critical care admission following elective surgery was not associated with survival benefit: prospective analysis of data from 27 countries

    Get PDF
    This was an investigator initiated study funded by Nestle Health Sciences through an unrestricted research grant, and by a National Institute for Health Research (UK) Professorship held by RP. The study was sponsored by Queen Mary University of London

    Prospective observational cohort study on grading the severity of postoperative complications in global surgery research

    Get PDF
    Background The Clavien–Dindo classification is perhaps the most widely used approach for reporting postoperative complications in clinical trials. This system classifies complication severity by the treatment provided. However, it is unclear whether the Clavien–Dindo system can be used internationally in studies across differing healthcare systems in high- (HICs) and low- and middle-income countries (LMICs). Methods This was a secondary analysis of the International Surgical Outcomes Study (ISOS), a prospective observational cohort study of elective surgery in adults. Data collection occurred over a 7-day period. Severity of complications was graded using Clavien–Dindo and the simpler ISOS grading (mild, moderate or severe, based on guided investigator judgement). Severity grading was compared using the intraclass correlation coefficient (ICC). Data are presented as frequencies and ICC values (with 95 per cent c.i.). The analysis was stratified by income status of the country, comparing HICs with LMICs. Results A total of 44 814 patients were recruited from 474 hospitals in 27 countries (19 HICs and 8 LMICs). Some 7508 patients (16·8 per cent) experienced at least one postoperative complication, equivalent to 11 664 complications in total. Using the ISOS classification, 5504 of 11 664 complications (47·2 per cent) were graded as mild, 4244 (36·4 per cent) as moderate and 1916 (16·4 per cent) as severe. Using Clavien–Dindo, 6781 of 11 664 complications (58·1 per cent) were graded as I or II, 1740 (14·9 per cent) as III, 2408 (20·6 per cent) as IV and 735 (6·3 per cent) as V. Agreement between classification systems was poor overall (ICC 0·41, 95 per cent c.i. 0·20 to 0·55), and in LMICs (ICC 0·23, 0·05 to 0·38) and HICs (ICC 0·46, 0·25 to 0·59). Conclusion Caution is recommended when using a treatment approach to grade complications in global surgery studies, as this may introduce bias unintentionally
    corecore