12 research outputs found

    The Role of Initial Oligomers in Amyloid Fibril Formation by Human Stefin B

    Get PDF
    Oligomers are commonly observed intermediates at the initial stages of amyloid fibril formation. They are toxic to neurons and cause decrease in neural transmission and long-term potentiation. We describe an in vitro study of the initial steps in amyloid fibril formation by human stefin B, which proved to be a good model system. Due to relative stability of the initial oligomers of stefin B, electrospray ionization mass spectrometry (ESI MS) could be applied in addition to size exclusion chromatography (SEC). These two techniques enabled us to separate and detect distinguished oligomers from the monomers: dimers, trimers, tetramers, up to decamers. The amyloid fibril formation process was followed at different pH and temperatures, including such conditions where the process was slow enough to detect the initial oligomeric species at the very beginning of the lag phase and those at the end of the lag phase. Taking into account the results of the lower-order oligomers transformations early in the process, we were able to propose an improved model for the stefin B fibril formation

    The major transition state in folding need not involve the immobilization of side chains

    No full text
    During protein folding in which few, if any, definable kinetic intermediates are observable, the nature of the transition state is central to understanding the course of the reaction. Current experimental data does not distinguish the relative contributions of side chain immobilization and dehydration phenomena to the major rate-limiting transition state whereas this distinction is central to theoretical models that attempt to simulate the behavior of proteins during folding. Renaturation of the small proteinase inhibitor cystatin under oxidizing versus reducing conditions is the first experimental case in which these processes can be studied independently. Using this example, we show that sidechain immobilization occurs downstream of the major folding transition state. A consequence of this is the existence of states with disordered side chains, which are distinct from kinetic protein folding intermediates and which lie within the folded state free energy well

    The mechanism of amyloid-fibril formation by stefin B: temperature and protein concentration dependence of the rates.

    No full text
    Cystatins, a family of structurally related cysteine proteinase inhibitors, have proved to be useful model system to study amyloidogenesis. We have extended previous studies of the kinetics of amyloid-fibril formation by human stefin B (cystatin B) and some of its mutants, and proposed an improved model for the reaction. Overall, the observed kinetics follow the nucleation and growth behavior observed for many other amyloidogenic proteins. The minimal kinetic scheme that best fits measurements of changes in CD and thioflavin T fluorescence as a function of protein concentration and temperature includes nucleation (modeled as N(I) irreversible transitions with equivalent rates (k(I)), which fitted with N(I) = 64), fibril growth and nonproductive oligomerization, best explained by an off-pathway state with a rate-limiting escape rate. Three energies of activation were derived from global fitting to the minimal kinetic scheme, and independently through the fitting of the individual component rates. Nucleation was found to be a first-order process within an oligomeric species with an enthalpy of activation of 55 +/- 4 kcal mol(-1). Fibril growth was a second-order process with an enthalpy of activation (27 +/- 5 kcal mol(-1)), which is indistinguishable from that of tetramer formation by cystatins, which involves limited conformational changes including proline trans to cis isomerization. The highest enthalpy of activation (95 +/- 5 kcal mol(-1) at 35 degrees C), characteristic of a substantial degree of unfolding as observed prior to domain-swapping reactions, equated with the escape rate of the off-pathway oligomeric state

    Modulation of contact order effects in the two-state folding of stefins A and B.

    Get PDF
    It is well established that contact order and folding rates are correlated for small proteins. The folding rates of stefins A and B differ by nearly two orders of magnitude despite sharing an identical native fold and hence contact order. We break down the determinants of this behavior and demonstrate that the modulation of contact order effects can be accounted for by the combined contributions of a framework-like mechanism, characterized by intrinsic helix stabilities, together with nonnative helical backbone conformation and nonnative hydrophobic interactions within the folding transition state. These contributions result in the formation of nonnative interactions in the transition state as evidenced by the opposing effects on folding rate and stability of these proteins
    corecore