224 research outputs found

    Rotation and Macroturbulence in Metal-poor Field Red Giant and Red Horizontal Branch Stars

    Get PDF
    We report the results for rotational velocities, Vrot sin i, and macroturbulence dispersion, zeta(RT), for 12 metal-poor field red giant branch stars and 7 metal-poor field red horizontal branch stars. The results are based on Fourier transform analyses of absorption line profiles from high-resolution (R ~ 120,000), high-S/N (~ 215 per pixel) spectra obtained with the Gecko spectrograph at CFHT. We find that the zeta(RT) values for the metal-poor RGB stars are very similar to those for metal-rich disk giants studied earlier by Gray and his collaborators. Six of the RGB stars have small rotational values, less than 2.0 km/sec, while five show significant rotation, over 3 km/sec. The fraction of rapidly rotating RHB stars is somewhat lower than found among BHB stars. We devise two empirical methods to translate the line-broadening results obtained by Carney et al. (2003, 2008) into Vrot sin i for all the RGB and RHB stars they studied. Binning the RGB stars by luminosity, we find that most metal-poor field RGB stars show no detectable sign, on average, of rotation. However, the most luminous stars, with M(V) <= -1.5, do show net rotation, with mean values of 2 to 4 km/sec, depending on the algorithm employed, and these stars also show signs of radial velocity jitter and mass loss.Comment: accepted for publication in the Astronomical Journa

    Rotation and Macroturbulence in Metal-Poor Field Red Giant and Red Horizontal Branch Stars

    Get PDF
    We report the results for rotational velocities, Vrot sin i, and macroturbulence dispersions, ÎśRT, for 12 metal-poor field red giant branch (RGB) stars and 7 metal-poor field red horizontal branch (RHB) stars. The results are based on Fourier transform

    Quantitative backscattered electron imaging of bone using a thermionic or a field emission electron source

    Get PDF
    Quantitative backscattered electron imaging is an established method to map mineral content distributions in bone and to determine the bone mineralization density distribution (BMDD). The method we applied was initially validated for a scanning electron microscope (SEM) equipped with a tungsten hairpin cathode (thermionic electron emission) under strongly defined settings of SEM parameters. For several reasons, it would be interesting to migrate the technique to a SEM with a field emission electron source (FE-SEM), which, however, would require to work with different SEM parameter settings as have been validated for DSM 962. The FE-SEM has a much better spatial resolution based on an electron source size in the order of several 100 nanometers, corresponding to an about 105 to 106 times smaller source area compared to thermionic sources. In the present work, we compare BMDD between these two types of instruments in order to further validate the methodology. We show that a transition to higher pixel resolution (1.76, 0.88, and 0.57 Οm) results in shifts of the BMDD peak and BMDD width to higher values. Further the inter-device reproducibility of the mean calcium content shows a difference of up to 1 wt% Ca, while the technical variance of each device can be reduced to ¹0.17 wt% Ca. Bearing in mind that shifts in calcium levels due to diseases, e.g., high turnover osteoporosis, are often in the range of 1 wt% Ca, both the bone samples of the patients as well as the control samples have to be measured on the same SEM device. Therefore, we also constructed new reference BMDD curves for adults to be used for FE-SEM data comparison

    Biosynthesis of Mitochondrial Porin and Insertion into the Outer Mitochondrial Membrane of Neuruspora crassa

    Get PDF
    Mitochondrial porin, the major protein of the outer mitochondrial membrane is synthesized by free cytoplasmic polysomes. The apparent molecular weight of the porin synthesized in homologous or heterologous cell-free systems is the same as that of the mature porin. Transfer in vitro of mitochondrial porin from the cytosolic fraction into the outer membrane of mitochondria could be demonstrated. Before membrane insertion, mitochondrial porin is highly sensitive to added proteinase; afterwards it is strongly protected. Binding of the precursor form to mitochondria occurs at 4°C and appears to precede insertion into the membrane. Unlike transfer of many precursor proteins into or across the inner mitochondrial membrane, assembly of the porin is not dependent on an electrical potential across the inner membrane

    Investigating the role of ASCC1 in the causation of bone fragility

    Get PDF
    Bi-allelic variants in ASCC1 cause the ultrarare bone fragility disorder “spinal muscular atrophy with congenital bone fractures-2” (SMABF2). However, the mechanism by which ASCC1 dysfunction leads to this musculoskeletal condition and the nature of the associated bone defect are poorly understood. By exome sequencing, we identified a novel homozygous deletion in ASCC1 in a female infant. She was born with severe muscular hypotonia, inability to breathe and swallow, and virtual absence of spontaneous movements; showed progressive brain atrophy, gracile long bones, very slender ribs, and a femur fracture; and died from respiratory failure aged 3 months. A transiliac bone sample taken postmortem revealed a distinct microstructural bone phenotype with low trabecular bone volume, low bone remodeling, disordered collagen organization, and an abnormally high bone marrow adiposity. Proteomics, RNA sequencing, and qPCR in patient-derived skin fibroblasts confirmed that ASCC1 was hardly expressed on protein and RNA levels compared with healthy controls. Furthermore, we demonstrate that mutated ASCC1 is associated with a downregulation of RUNX2, the master regulator of osteoblastogenesis, and SERPINF1, which is involved in osteoblast and adipocyte differentiation. It also exerts an inhibitory effect on TGF-β/SMAD signaling, which is important for bone development. Additionally, knockdown of ASCC1 in human mesenchymal stromal cells (hMSCs) suppressed their differentiation capacity into osteoblasts while increasing their differentiation into adipocytes. This resulted in reduced mineralization and elevated formation of lipid droplets. These findings shed light onto the pathophysiologic mechanisms underlying SMABF2 and assign a new biological role to ASCC1 acting as an important pro-osteoblastogenic and anti-adipogenic regulator.</p

    Cutpoints for mild, moderate and severe pain in patients with osteoarthritis of the hip or knee ready for joint replacement surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cutpoints (CPs) for mild, moderate and severe pain are established and used primarily in cancer pain. In this study, we wanted to determine the optimal CPs for mild, moderate, and severe pain in joint replacement surgery candidates with osteoarthritis (OA) of the hip or knee, and to validate the different CPs.</p> <p>Methods</p> <p>Patients (n = 353) completed the Brief Pain Inventory (BPI), the WOMAC Arthritis Index, and the SF-36 health status measure. Optimal CPs for categorizing average pain with three severity levels were derived using multivariate analysis of variance, using different CP sets for average pain as the independent variable and seven interference items from the BPI as the dependent variable. To validate the CPs, we assessed if patients in the three pain severity groups differed in pain as assessed with WOMAC and SF-36, and if BPI average pain with the optimal CPs resulted in higher correlation with pain dimensions of the WOMAC and SF-36 than other CPs.</p> <p>Results</p> <p>The optimal CPs on the 0–10 point BPI scale were CP (4,6) among hip patients and CP (4,7) among knee patients. The resulting pain severity groups differed in pain, as assessed with other scales than those used to derive the CPs. The optimal CPs had the highest association of average pain with WOMAC pain scores.</p> <p>Conclusion</p> <p>CPs for pain severity differed somewhat for patients with OA of the hip and knee. The association of BPI average pain scores categorized according to the optimal CPs with WOMAC pain scores supports the validity of the derived optimal CPs.</p

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Upregulation of MMP-13 and TIMP-1 expression in response to mechanical strain in MC3T3-E1 osteoblastic cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanical strain plays a significant role in the regulation of bone matrix turnover, which is mediated in part by matrix metalloproteinase (MMP)-13 and tissue inhibitors of matrix metalloproteinase (TIMP)-1. However, little is known about the correlation between mechanical strain and osteoblastic cell activities, including extracellular matrix (ECM) metabolism. Herein, we determined the effect of different magnitudes of cyclic tensile strain (0%, 6%, 12%, and 18%) on MMP-13 and TIMP-1 mRNA and protein expression in MC3T3-E1 osteoblasts. Furthermore, we employed specific inhibitors to examine the role of distinct signal transduction pathways known to mediate cellular responses to mechanical strain.</p> <p>Results</p> <p>We identified a magnitude-dependent increase in MMP-13 and TIMP-1 mRNA and protein levels in response to mechanical strains corresponding to 6%, 12%, and 18% elongation. The strain-induced increases in MMP-13 and TIMP-1 mRNA expression were inhibited by PD098059 and cycloheximide, respectively.</p> <p>Conclusions</p> <p>Our results suggest a mechanism for the regulation of bone matrix metabolism mediated by the differential expression of MMP-13 and TIMP-1 in response to increasing magnitudes of mechanical strain.</p
    • …
    corecore