28 research outputs found

    Real time monitoring of endogenous cytoplasmic mRNA using linear antisense 2′-O-methyl RNA probes in living cells

    Get PDF
    Visualization and monitoring of endogenous mRNA in the cytoplasm of living cells promises a significant comprehension of refined post-transcriptional regulation. Fluorescently labeled linear antisense oligonucleotides can bind to natural mRNA in a sequence-specific way and, therefore, provide a powerful tool in probing endogenous mRNA. Here, we investigated the feasibility of using linear antisense probes to monitor the variable and dynamic expression of endogenous cytoplasmic mRNAs. Two linear antisense 2′-O-methyl RNA probes, which have different interactive fluorophores at the 5′-end of one probe and at the 3′-end of the other, were used to allow fluorescence resonance energy transfer (FRET) upon hybridization to the target mRNA. By characterizing the formation of the probe-mRNA hybrids in living cells, we found that the probe composition and concentration are crucial parameters in the visualization of endogenous mRNA with high specificity. Furthermore, rapid hybridization (within 1 min) of the linear antisense probe enabled us to visualize dynamic processes of endogenous c-fos mRNA, such as fast elevation of levels after gene induction and the localization of c-fos mRNA in stress granules in response to cellular stress. Thus, our approach provides a basis for real time monitoring of endogenous cytoplasmic mRNA in living cells

    An RNA toolbox for single-molecule force spectroscopy studies

    Get PDF
    Precise, controllable single-molecule force spectroscopy studies of RNA and RNA-dependent processes have recently shed new light on the dynamics and pathways of RNA folding and RNA-enzyme interactions. A crucial component of this research is the design and assembly of an appropriate RNA construct. Such a construct is typically subject to several criteria. First, single-molecule force spectroscopy techniques often require an RNA construct that is longer than the RNA molecules used for bulk biochemical studies. Next, the incorporation of modified nucleotides into the RNA construct is required for its surface immobilization. In addition, RNA constructs for single-molecule studies are commonly assembled from different single-stranded RNA molecules, demanding good control of hybridization or ligation. Finally, precautions to prevent RNase- and divalent cation-dependent RNA digestion must be taken. The rather limited selection of molecular biology tools adapted to the manipulation of RNA molecules, as well as the sensitivity of RNA to degradation, make RNA construct preparation a challenging task. We briefly illustrate the types of single-molecule force spectroscopy experiments that can be performed on RNA, and then present an overview of the toolkit of molecular biology techniques at one's disposal for the assembly of such RNA constructs. Within this context, we evaluate the molecular biology protocols in terms of their effectiveness in producing long and stable RNA constructs

    Some Aspects of Nucleic Acids Chemistry

    No full text
    This thesis is divided into two parts based on a total of 8 papers: Part 1: Synthesis, physicochemical and biochemical studies of chemically modified oligonucleotides and their duplexes and triplexes. Potency of the chromophore conjugated DNA oligonucleotides as antigene and antisense gene repressors was evaluated. The effect of geometry, bulk and ¥ð-electron density of a series of chromophores, tethered at the 5'-end of oligonucleotides, as well as the effect of the linker nature, length and the attachment site of the chromophore to the oligo were explored based on the stability of the duplexes and triplexes. A dramatic improvement in the triplex stability with ara-U linked phenazine oligo (potent antigene) was achieved (¥ÄTm = 16.5¢ª C). A number of selected phenazine and dipyridophenazine tethered antisense oligos (AONs) and their phosphorothioate analogues were shown to form the AON/RNA hybrid duplexes with enhanced thermal stability. CD experiments revealed that these duplexes have the global structure unaltered from that of the native counterpart. RNase H degradation studies on three RNA targets having different degrees of folded structures showed that tethering of phenazine and dipyridophenazine increases the hydrolysis rates (potent antisense) of the target RNA, and that chemical nature of the chromophore influences the RNase H cleavage pattern. Further investigation at the RNA saturated conditions revealed that 3'-tethered chromophores influence the substrate recognition, and the kinetics of the cleavage by RNase H. Conjugation of different chromophores, charged polyaromatic systems and metal complexes with polyaromatic ligands at different sites of the AON revealed that RNase H is very sensitive to any modifications in the middle region of the AON/RNA duplex. On the contrary, any modification at the 3'-end of the AON regardless of the bulk of the substituent or presence of positive charge can be easily tolerated by the enzyme. Sensitivity of the RNase H towards the local structural changes in the AON/RNA hybrid was probed with a number of AONs containing a single 1-(1',3'-O-anhydro-©¬-D-psicofuranosyl)thymine with locked 3'-endo sugar conformation at different sites of AON. RNase H degradation studies revealed that the local conformational changes brought by the constrained nucleoside, although invisible by CD, span in the hybrid as far as 5 nucleotides toward the 5'-end of the AONs (3'-end of RNA), showing the unique transmission of the structural distortion from a single modification site. The results also showed that the structural requirements for the substrate binding and substrate cleavage by RNase H appear to be different. Part 2: Preparation of biologically important isotope labelled oligo-RNAs for the NMR structure determination in solution. Synthesis of the non-uniformly 13C5 labelled 29mer HIV-1 TAR RNA was achieved by solid-phase synthesis using 13C5 labelled ribonucleosides from 13C6-D-glucose). Two hammerhead forming RNAs (16mer and 25mer) were synthesized according to the Uppsala NMR-window strategy, where the sugar residues of the nucleosides forming stem I, II and the loop of the stem III of the resulting hammerhead complex were deuterated. UV melting and high resolution NMR structural studies showed that the 16mer RNA under quasiphysiological condition folds to a very stable hairpin structure, which prevents formation of a hammerhead RNA with the 25mer, primarily owing to thermodynamic reasons

    Thiomethylation, Nitro Reduction and Tandem Reduction/SMe Insertion of Nitrogen Heterocycles Using BF3⦁SMe2

    No full text
    Herein, a general, solvent-free and straightforward thiomethylation of electron deficient heterocycles using BF3⦁SMe2 as a dual thiomethyl source and Lewis acidic activator is presented. A range of heterocycles including pyrimidine, pyrazine, pyridazine, thiazole and purine derivatives were successfully substituted using this method. An unexpected reductive property of BF3⦁SMe2 towards nitropyridines was also discovered including an intriguing tandem reduction/SMe insertion process in certain substrates. Notable features of the present work include its convenience and use of a non-malodorous reagent while the discovery of novel chemical transformations using BF3⦁SMe2 provides fundamental new insights into the reactivity of this commonly employed reagent

    Antibacterial sulfonimidamide-based oligopeptides as type I signal peptidase inhibitors : Synthesis and biological evaluation

    No full text
    Oligopeptide boronates with a lipophilic tail are known to inhibit the type I signal peptidase in E. coli, which is a promising drug target for developing novel antibiotics. Antibacterial activity depends on these oligopeptides having a cationic modification to increase their permeation. Unfortunately, this modification is associated with cytotoxicity, motivating the need for novel approaches. The sulfonimidamide functionality has recently gained much interest in drug design and discovery, as a means of introducing chirality and an imine-handle, thus allowing for the incorporation of additional substituents. This in turn can tune the chemical and biological properties, which are here explored. We show that introducing the sulfonimidamide between the lipophilic tail and the peptide in a series of signal peptidase inhibitors resulted in antibacterial activity, while the sulfonamide isostere and previously known non-cationic analogs were inactive. Additionally, we show that replacing the sulfonamide with a sulfonimidamide resulted in decreased cytotoxicity, and similar results were seen by adding a cationic sidechain to the sulfonimidamide motif. This is the first report of incorporation of the sulfonimidamide functional group into bioactive peptides, more specifically into antibacterial oligopeptides, and evaluation of its biological effects
    corecore