950 research outputs found

    Challenges and opportunities to formulate and stabilize vaccine candidates targeted for use in LMICs

    Get PDF
    N/A Please click Additional File below for the presentation

    Slow-Neutron Scattering by Rotators. II

    Get PDF
    The methods developed in a previous paper for extending the neutron scattering formalism of Zemach and Glauber to any type of molecular rotator have been employed to derive generalized forms generalized forms of the differential cross sections for rotator scattering. A mass-ratio expansion for the treatment of the high-energy limit is illustrated on the classical cross section and then employed in the treatment of the more general quantum-mechanical expression for the differential cross section. The results apply to an arbitrarily asymmetric rotator. The very low energy approximation is carried out for the symmetric rotator, and the procedure is compared with the explicit summing of the partial cross sections for individual rotational transitions. The inelastic correction to the static approximation for interference scattering is calculated to an accuracy of first order in the mass ratios for the case of the symmetric rotator

    Crystallization of a nonreplicating rotavirus vaccine candidate.

    Full text link
    Nonreplicating rotavirus vaccine (NRRV) candidates are being developed with the aim of serving the needs of developing countries. A significant proportion of the cost of manufacturing such vaccines is the purification in multiple chromatography steps. Crystallization has the potential to reduce purification costs and provide new product storage modality, improved operational flexibility, and reduced facility footprints. This communication describes a systematic approach for the design of the crystallization of an NRRV candidate, VP8 subunit proteins fused to the P2 epitope of tetanus toxin, using first-principles models and preliminary experimental data. The first-principles models are applied to literature data to obtain feasible crystallization conditions and lower bounds for nucleation and growth rates. Crystallization is then performed in a hanging-drop vapor diffusion system, resulting in the nucleation and growth of NRRV crystals. The crystals obtained in a scaled-up evaporative crystallization contain proteins truncated in the P2 region, but have no significant differences with the original samples in terms of antibody binding and overall conformational stability. These results demonstrate the promise of evaporative crystallization of the NRRV

    Coagulation status after therapeutic plasma exchange using citrate in kidney transplant recipients

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135562/1/trf13803_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135562/2/trf13803.pd

    The upper limit of protein thermostability

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Applied Biological Sciences, 1989.Includes bibliographical references (leaves 143-158).by David B. Volkin.Ph.D

    Application of radar chart array analysis to visualize effects of formulation variables on IgG1 particle formation as measured by multiple analytical techniques

    Get PDF
    This study presents a novel method to visualize protein aggregate and particle formation data to rapidly evaluate the effect of solution and stress conditions on the physical stability of an IgG1 monoclonal antibody (mAb). Radar chart arrays were designed so that hundreds of Microflow Digital Imaging (MFI) solution measurements, evaluating different mAb formulations under varying stresses, could be presented in a single figure with minimal loss of data resolution. These MFI radar charts show measured changes in subvisible particle number, size and morphology distribution as a change in the shape of polygons. Radar charts were also created to visualize mAb aggregate and particle formation across a wide size range by combining data sets from size exclusion chromatography (SEC), Archimedes resonant mass measurements, and MFI. We found that the environmental/mechanical stress condition (e.g., heat vs. agitation) was the most important factor in influencing the particle size and morphology distribution with this IgG1 mAb. Additionally, the presence of NaCl exhibited a pH and stress dependent behavior resulting in promotion or inhibition mAb particle formation. This data visualization technique provides a comprehensive analysis of the aggregation tendencies of this IgG1 mAb in different formulations with varying stresses as measured by different analytical techniques

    Multidimensional Methods for the Formulation of Bipharmaceuticals and Vaccines

    Get PDF
    Determining and preserving the higher order structural integrity and conformational stability of proteins, plasmid DNA and macromolecular complexes such as viruses, virus-like particles and adjuvanted antigens is often a significant barrier to the successful stabilization and formulation of biopharmaceutical drugs and vaccines. These properties typically must be investigated with multiple lower resolution experimental methods, since each technique monitors only a narrow aspect of the overall conformational state of a macromolecular system. This review describes the use of empirical phase diagrams (EPDs) to combine large amounts of data from multiple high-throughput instruments and construct a map of a target macromolecule's physical state as a function of temperature, solvent conditions, and other stress variables. We present a tutorial on the mathematical methodology, an overview of some of the experimental methods typically used, and examples of some of the previous major formulation applications. We also explore novel applications of EPDs including potential new mathematical approaches as well as possible new biopharmaceutical applications such as analytical comparability, chemical stability, and protein dynamics

    Application of analytical characterization tools in process and formulation development of low cost vaccines using the ULTRA manufacturing platform

    Get PDF
    In 2016, an estimated 19.5 million infants worldwide did not receive routine life-saving vaccinations according to the World Health Organization (WHO)1. Two major limitations in improving global vaccination coverage include the costs associated with vaccine manufacturing and the challenges associated with maintaining a consistent supply. The aim of the ‘ULTRA’ project (Ultra Low-cost TRansferable Automated Platform for Vaccine Manufacturing) is to standardize the development and production of new protein subunit vaccine candidates at globally affordable costs by creating a generic, low-cost, integrated, and automated vaccine manufacturing platform. In a collaborative effort between MIT, UCL, and KU (Figure 1), state-of-the-art analytical tools will be utilized to provide well-characterized vaccine bulk and drug product facilitating process changes and reduced QC costs. Please click Additional Files below to see the full abstract

    Two Decades of Publishing Excellence in Pharmaceutical Biotechnology

    Get PDF
    Recombinant biological products have revolutionized modern medicine by providing both remarkably effective vaccines to prevent disease and therapeutic drugs to treat a wide variety of unmet medical needs. Since the early 1980s, dozens of new therapeutic protein drugs and macromolecular vaccines have been commercialized, which have benefitted millions of patients worldwide. The pharmaceutical development of these biological products presented many scientific and technical challenges, some of which continue today with newer candidates including recombinant protein-based vaccines with novel adjuvants, peptide and RNA-based drugs, and stem cellular therapies. Compared with small molecule drugs, the characterization, stabilization, formulation, and delivery of biomolecules share common hurdles as well as unique challenges. This area of drug development research has been referred to as “pharmaceutical biotechnology”, in recognition of the critical role that recombinant DNA technology plays in the design and production of most of these biological products. Current research focus areas in this field include (i) determination of structural integrity of the primary sequence, post-translational modifications, and higher-order three dimensional shapes, (ii) assessment of physicochemical degradation pathways and their effects on biological activity and potency, (iii) formulation design and development to optimize stability and delivery, (iv) evaluating and optimizing process development steps including lyophilization and fill-finish, (v) analytical method development and applications of new instruments and data visualization tools, (vi) design and development of drug delivery approaches, and (vii) studies of biological effects including pharmacokinetics, pharmacodynamics, and adverse immunogenicity. During the early days of pharmaceutical biotechnology research, there were numerous scientific challenges because the analytical characterization approaches needed for development of recombinant biological molecules in “real world” pharmaceutical dosage forms were essentially unknown. Furthermore, understanding critical drug product manufacturing issues (e.g., stability of biological compounds during processing, storage, and shipping as well as reproducibility of fill-finish production technologies) and behavior during and after patient administration was often achieved by “on-the-job” training. Fortunately, the pioneers in the field regularly presented research at key conferences and started publishing early in pharmaceutical sciences journals such as Journal of Pharmaceutical Sciences. Recognizing this critically important new field, the then Editor of the journal, Professor Bill Higuchi, instituted a new “pharmaceutical biotechnology” category for research papers. This insightful move was coupled with an equally wise decision to recruit Dr. C. Russell Middaugh as the new Associate Editor for the new research category. As will be detailed below, under Dr. Middaugh’s diligent and expert guidance, pharmaceutical biotechnology papers have grown in number, scope, and impact over the past 20 years, and these days, the Journal of Pharmaceutical Sciences is viewed by scientific leaders in the field as the “go to” place for publication of the most important results and descriptions of innovations in pharmaceutical biotechnology
    corecore