1,385 research outputs found

    Electromagnetic Decays of Heavy Baryons

    Get PDF
    The electromagnetic decays of the ground state baryon multiplets with one heavy quark are calculated using Heavy Hadron Chiral Perturbation Theory. The M1 and E2 amplitudes for S^{*}--> S gamma, S^{*} --> T gamma and S --> T gamma are separately computed. All M1 transitions are calculated up to O(1/Lambda_chi^2). The E2 amplitudes contribute at the same order for S^{*}--> S gamma, while for S^{*} --> T gamma they first appear at O(1/(m_Q \Lambda_\chi^2)) and for S --> T gamma are completely negligible. The renormalization of the chiral loops is discussed and relations among different decay amplitudes are derived. We find that chiral loops involving electromagnetic interactions of the light pseudoscalar mesons provide a sizable enhancement of these decay widths. Furthermore, we obtain an absolute prediction for the widths of Xi^{0'(*)}_c--> Xi^{0}_c gamma and Xi^{-'(*)}_b--> Xi^{-}_b gamma. Our results are compared to other estimates existing in the literature.Comment: 17 pages, 3 figures, submitted to Phys. Rev.

    Scintillator counters with WLS fiber/MPPC readout for the side muon range detector (SMRD)of the T2K experiment

    Full text link
    The T2K neutrino experiment at J-PARC uses a set of near detectors to measure the properties of an unoscillated neutrino beam and neutrino interaction cross-sections. One of the sub-detectors of the near-detector complex, the side muon range detector (SMRD), is described in the paper. The detector is designed to help measure the neutrino energy spectrum, to identify background and to calibrate the other detectors. The active elements of the SMRD consist of 0.7 cm thick extruded scintillator slabs inserted into air gaps of the UA1 magnet yokes. The readout of each scintillator slab is provided through a single WLS fiber embedded into a serpentine shaped groove. Two Hamamatsu multi-pixel avalanche photodiodes (MPPC's) are coupled to both ends of the WLS fiber. This design allows us to achieve a high MIP detection efficiency of greater than 99%. A light yield of 25-50 p.e./MIP, a time resolution of about 1 ns and a spatial resolution along the slab better than 10 cm were obtained for the SMRD counters.Comment: 7 pages, 4 figures; talk at TIPP09, March 12-17, Tsukuba, Japan; to be published in the conference proceeding

    Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector

    Get PDF
    Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach of three-dimensional reconstruction for the LAr TPC with a practical application to track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of real data tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.Comment: Submitted to Advances in High Energy Physic

    Search for anomalies in the {\nu}e appearance from a {\nu}{\mu} beam

    Get PDF
    We report an updated result from the ICARUS experiment on the search for {\nu}{\mu} ->{\nu}e anomalies with the CNGS beam, produced at CERN with an average energy of 20 GeV and travelling 730 km to the Gran Sasso Laboratory. The present analysis is based on a total sample of 1995 events of CNGS neutrino interactions, which corresponds to an almost doubled sample with respect to the previously published result. Four clear {\nu}e events have been visually identified over the full sample, compared with an expectation of 6.4 +- 0.9 events from conventional sources. The result is compatible with the absence of additional anomalous contributions. At 90% and 99% confidence levels the limits to possible oscillated events are 3.7 and 8.3 respectively. The corresponding limit to oscillation probability becomes consequently 3.4 x 10-3 and 7.6 x 10-3 respectively. The present result confirms, with an improved sensitivity, the early result already published by the ICARUS collaboration

    Performance Of A Liquid Argon Time Projection Chamber Exposed To The WANF Neutrino Beam

    Get PDF
    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low multiplicity neutrino interactions.Comment: 14 pages, 12 figures. Submitted for publication to Physical Review

    A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS

    Get PDF
    The OPERA collaboration has claimed evidence of superluminal {\nu}{_\mu} propagation between CERN and the LNGS. Cohen and Glashow argued that such neutrinos should lose energy by producing photons and e+e- pairs, through Z0 mediated processes analogous to Cherenkov radiation. In terms of the parameter delta=(v^2_nu-v^2_c)/v^2_c, the OPERA result implies delta = 5 x 10^-5. For this value of \delta a very significant deformation of the neutrino energy spectrum and an abundant production of photons and e+e- pairs should be observed at LNGS. We present an analysis based on the 2010 and part of the 2011 data sets from the ICARUS experiment, located at Gran Sasso National Laboratory and using the same neutrino beam from CERN. We find that the rates and deposited energy distributions of neutrino events in ICARUS agree with the expectations for an unperturbed spectrum of the CERN neutrino beam. Our results therefore refute a superluminal interpretation of the OPERA result according to the Cohen and Glashow prediction for a weak current analog to Cherenkov radiation. In particular no superluminal Cherenkov like e+e- pair or gamma emission event has been directly observed inside the fiducial volume of the "bubble chamber like" ICARUS TPC-LAr detector, setting the much stricter limit of delta < 2.5 10^-8 at the 90% confidence level, comparable with the one due to the observations from the SN1987A.Comment: 17 pages, 6 figure

    SVZ sum rules : 30 + 1 years later

    Full text link
    For this exceptional 25th anniversary of the QCD-Montpellier series of conferences initiated in 85 with the name "Non-perturbative methods", we take the opportunuity to celebrate the 30 + 1 years of the discovery of the SVZ (also called ITEP, QCD or QCD spectral) sum rules by M.A. Shifman, A.I. Vainshtein and V.I. Zakahrov in 79 [1]. In this talk, I have the duty to present the status of the method. I shall (can) not enumerate the vast area of successful applications of sum rules in hadron physics but I shall focus on the historical evolution of field and its new developments. More detailed related discussions and more complete references can be found in the textbooks [2,3].Comment: 8 pages, 1 figure, 4 tables, talk given at QCD 10 (15th international QCD-Montpellier conference) for the celebration of the 25th anniversary of the QCD series of Montpellier conference and of the 30+1 years discovery of the SVZ sum rule

    The T2K Side Muon Range Detector

    Full text link
    The T2K experiment is a long baseline neutrino oscillation experiment aiming to observe the appearance of {\nu} e in a {\nu}{\mu} beam. The {\nu}{\mu} beam is produced at the Japan Proton Accelerator Research Complex (J-PARC), observed with the 295 km distant Super- Kamiokande Detector and monitored by a suite of near detectors at 280m from the proton target. The near detectors include a magnetized off-axis detector (ND280) which measures the un-oscillated neutrino flux and neutrino cross sections. The present paper describes the outermost component of ND280 which is a side muon range detector (SMRD) composed of scintillation counters with embedded wavelength shifting fibers and Multi-Pixel Photon Counter read-out. The components, performance and response of the SMRD are presented.Comment: 13 pages, 19 figures v2: fixed several typos; fixed reference

    The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches

    Get PDF
    The feasibility of a next generation neutrino observatory in Europe is being considered within the LAGUNA design study. To accommodate giant neutrino detectors and shield them from cosmic rays, a new very large underground infrastructure is required. Seven potential candidate sites in different parts of Europe and at several distances from CERN are being studied: Boulby (UK), Canfranc (Spain), Fr\'ejus (France/Italy), Pyh\"asalmi (Finland), Polkowice-Sieroszowice (Poland), Slanic (Romania) and Umbria (Italy). The design study aims at the comprehensive and coordinated technical assessment of each site, at a coherent cost estimation, and at a prioritization of the sites within the summer 2010.Comment: 5 pages, contribution to the Workshop "European Strategy for Future Neutrino Physics", CERN, Oct. 200
    • 

    corecore