61 research outputs found

    Regression Models to Predict Air Pollution from Affordable Data Collections

    Get PDF
    Air quality monitoring is key in assuring public health. However, the necessary equipment to accurately measure the criteria pollutants is expensive. Since the countries with more serious problems of air pollution are the less wealthy, this study proposes an affordable method based on machine learning to estimate the concentration of PM2.5. The capital city of Ecuador is used as case study. Several regression models are built from features of different levels of affordability. The first result shows that cheap data collection based on web traffic monitoring enables us to create a model that fairly correlates traffic density with air pollution. Building multiple models according to the hourly occurrence of the pollution peaks seems to increase the accuracy of the estimation, especially in the morning hours. The second result shows that adding meteorological factors allows for a significant improvement of the prediction of PM2.5 concentrations. Nevertheless, the last finding demonstrates that the best predictive model should be based on a hybrid source of data that includes trace gases. Since the sensors to monitor such gases are costly, the last part of the chapter gives some recommendations to get an accurate prediction from models that consider no more than two trace gases

    Urban Air Pollution Mapping and Traffic Intensity: Active Transport Application

    Get PDF
    Air pollution represents one of the greatest risks to human health, with most of the world’s cities exceeding World Health Organization’s recommendations for air quality. In developing countries, a major share of air pollution comes from traffic, consequently, creating air pollution hot spots inside urban street networks. While the world needs to switch to more active and sustainable ways of commuting in order to reduce traffic emissions and help improve degrading cardiopulmonary health due to increasingly sedentary habits, studies point to the negative effects of physical activity near traffic emissions. Common approaches of urban cycling infrastructure planning rely on space availability and route needs, omitting the most vital aspect—air quality. This study, therefore, combines the worldwide need for active commute and health benefits of the cyclists. Our goal was to produce urban pollution map through the geoprocessing of Google Traffic data, validated through the correlation of street level PM2.5 (particulate matter <2.5 μm) concentrations and traffic intensity in a selected district of Quito, Ecuador. The multidisciplinary approach presented in this study can be used by city planners all over the world to help identify the cycling network based on air quality conditions and, consequently, promoting active travel

    Contrasted effects of relative humidity and precipitation on urban PM2.5 pollution in high elevation urban areas

    Get PDF
    Levels of urban pollution can be influenced largely by meteorological conditions and the topography of the area. The impact of the relative humidity (RH) on the daily average PM2.5 concentrations was studied at several sites in a mid-size South American city at a high elevation over the period of nine years. In this work, we show that there is a positive correlation between daily average urban PM2.5 concentrations and the RH in traffic-busy central areas, and a negative correlation in the outskirts of the city inmore industrial areas. While in the traffic sites strong events of precipitation (≥9 mm) played a major role in PM2.5 pollution removal, in the city outskirts, the PM2.5 concentrations decreased with increasing RH independently of rain accumulation. Increasing PM2.5 concentrations are to be expected in any highly motorized city where there is high RH and a lack of strong precipitation, especially in rapidly growing and developing countries with high motorization due to poor fuel quality. Finally, two models, based on a logistic regression algorithm, are proposed to describe the effect of rain and RH on PM2.5, when the source of pollution is traffic-based vs. industry-based.publishersversionpublishe

    Modeling PM 2.5

    Get PDF
    Outdoor air pollution costs millions of premature deaths annually, mostly due to anthropogenic fine particulate matter (or PM2.5). Quito, the capital city of Ecuador, is no exception in exceeding the healthy levels of pollution. In addition to the impact of urbanization, motorization, and rapid population growth, particulate pollution is modulated by meteorological factors and geophysical characteristics, which complicate the implementation of the most advanced models of weather forecast. Thus, this paper proposes a machine learning approach based on six years of meteorological and pollution data analyses to predict the concentrations of PM2.5 from wind (speed and direction) and precipitation levels. The results of the classification model show a high reliability in the classification of low (25 µg/m3) and low (<10 µg/m3) versus moderate (10–25 µg/m3) concentrations of PM2.5. A regression analysis suggests a better prediction of PM2.5 when the climatic conditions are getting more extreme (strong winds or high levels of precipitation). The high correlation between estimated and real data for a time series analysis during the wet season confirms this finding. The study demonstrates that the use of statistical models based on machine learning is relevant to predict PM2.5 concentrations from meteorological data

    Air quality and urban sustainable development: the application of machine learning tools

    Full text link
    [EN] Air quality has an efect on a population¿s quality of life. As a dimension of sustainable urban development, governments have been concerned about this indicator. This is refected in the references consulted that have demonstrated progress in forecasting pollution events to issue early warnings using conventional tools which, as a result of the new era of big data, are becoming obsolete. There are a limited number of studies with applications of machine learning tools to characterize and forecast behavior of the environmental, social and economic dimensions of sustainable development as they pertain to air quality. This article presents an analysis of studies that developed machine learning models to forecast sustainable development and air quality. Additionally, this paper sets out to present research that studied the relationship between air quality and urban sustainable development to identify the reliability and possible applications in diferent urban contexts of these machine learning tools. To that end, a systematic review was carried out, revealing that machine learning tools have been primarily used for clustering and classifying variables and indicators according to the problem analyzed, while tools such as artifcial neural networks and support vector machines are the most widely used to predict diferent types of events. The nonlinear nature and synergy of the dimensions of sustainable development are of great interest for the application of machine learning tools.Molina-Gómez, NI.; Díaz-Arévalo, JL.; López Jiménez, PA. (2021). Air quality and urban sustainable development: the application of machine learning tools. International Journal of Environmental Science and Technology. 18(4):1-18. https://doi.org/10.1007/s13762-020-02896-6S118184Al-Dabbous A, Kumar P, Khan A (2017) Prediction of airborne nanoparticles at roadside location using a feed–forward artificial neural network. Atmos Pollut Res 8:446–454. https://doi.org/10.1016/j.apr.2016.11.004Antanasijević D, Pocajt V, Povrenović D, Ristić M, Perić-Grujić A (2013) PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci Total Environ 443:511–519. https://doi.org/10.1016/j.scitotenv.2012.10.110Brink H, Richards JW, Fetherolf M (2016) Real-world machine learning. Richards JW, Fetherolf M (eds) Manning Publications Co. Berkeley, CA. https://www.manning.com/books/real-world-machine-learning. Accessed 26 Apr 2020Cervone G, Franzese P, Ezber Y, Boybeyi Z (2008) Risk assessment of atmospheric emissions using machine learning. Nat Hazard Earth Syst 8:991–1000. https://doi.org/10.5194/nhess-8-991-2008Chen S, Kan G, Li J, Liang K, Hong Y (2018) Investigating China’s urban air quality using big data, information theory, and machine learning. Pol J Environ Stud 27:565–578. https://doi.org/10.15244/pjoes/75159Corani (2005) Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning. Ecol Model 185:513–529. https://doi.org/10.1016/j.ecolmodel.2005.01.008Cruz C, Gómez A, Ramírez L, Villalva A, Monge O, Varela J, Quiroz J, Duarte H (2017) Calidad del aire respecto de metales (Pb, Cd, Ni, Cu, Cr) y relación con salud respiratoria: caso Sonora, México. Rev Int Contam Ambient 33:23–34. https://doi.org/10.20937/RICA.2017.33.esp02.02de Hoogh K, Héritier H, Stafoggia M, Künzli N, Kloog I (2018) Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland. Environ Pollut 233:1147–1154. https://doi.org/10.1016/j.envpol.2017.10.025Franceschi F, Cobo M, Figueredo M (2018) Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering. Atmos Pollut Res 9:912–922. https://doi.org/10.1016/j.apr.2018.02.006García N, Combarro E, del Coz J, Montañes E (2013) A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): a case study. Appl Math Comput 219:8923–8937. https://doi.org/10.1016/j.amc.2013.03.018Gibert K, Sànchez-Màrre M, Sevilla B (2012) Tools for environmental data mining and intelligent decision support. In iEMSs. Leipzig, Germany. http://www.iemss.org/society/index.php/iemss-2012-proceedings. Accessed 26 Nov 2018Gibert K, Sànchez-Marrè M, Izquierdo J (2016) A survey on pre-processing techniques: relevant issues in the context of environmental data mining. Ai Commun 29:627–663. https://doi.org/10.3233/AIC-160710Gounaridis D, Chorianopoulos I, Koukoulas S (2018) Exploring prospective urban growth trends under different economic outlooks and land-use planning scenarios: the case of Athens. Appl Geogr 90:134–144. https://doi.org/10.1016/j.apgeog.2017.12.001Holloway J, Mengersen K (2018) Statistical machine learning methods and remote sensing for sustainable development goals: a review. Remote Sens 10:1–21. https://doi.org/10.3390/rs10091365Ifaei P, Karbassi A, Lee S, Yoo Ch (2017) A renewable energies-assisted sustainable development plan for Iran using techno-econo-socio-environmental multivariate analysis and big data. Energy Convers Manag 153:257–277. https://doi.org/10.1016/j.enconman.2017.10.014Kadiyala A, Kumar A (2017a) Applications of R to evaluate environmental data science problems. Environ Prog Sustain 36:1358–1364. https://doi.org/10.1002/ep.12676Kadiyala A, Kumar A (2017b) Vector time series-based radial basis function neural network modeling of air quality inside a public transportation bus using available software. Environ Prog Sustain 36:4–10. https://doi.org/10.1002/ep.12523Karimian H, Li Q, Wu Ch, Qi Y, Mo Y, Chen G, Zhang X, Sachdeva S (2019) Evaluation of different machine learning approaches to forecasting PM2.5 mass concentrations. Aerosol Air Qual Res 19:1400–1410. https://doi.org/10.4209/aaqr.2018.12.0450Krzyzanowski M, Apte J, Bonjour S, Brauer M, Cohen A, Prüss-Ustun A (2014) Air pollution in the mega-cities. Curr Environ Health Rep 1:185–191. https://doi.org/10.1007/s40572-014-0019-7Lässig K, Morik (2016) Computat sustainability. Springer, Berlin. https://doi.org/10.1007/978-3-319-31858-5Li Y, Wu Y-X, Zeng Z-X, Guo L (2006) Research on forecast model for sustainable development of economy-environment system based on PCA and SVM. In: Proceedings of the 2006 international conference on machine learning and cybernetics, vol 2006. IEEE, Dalian, China, pp 3590–3593. https://doi.org/10.1109/ICMLC.2006.258576Liu B-Ch, Binaykia A, Chang P-Ch, Tiwari M, Tsao Ch-Ch (2017) Urban air quality forecasting based on multi- dimensional collaborative support vector regression (SVR): a case study of Beijing-Tianjin-Shijiazhuang. PLoS ONE 12:1–17. https://doi.org/10.1371/journal.pone.0179763Lubell M, Feiock R, Handy S (2009) City adoption of environmentally sustainable policies in California’s Central Valley. J Am Plan Assoc 75:293–308. https://doi.org/10.1080/01944360902952295Ma D, Zhang Z (2016) Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere. J Hazard Mater 311:237–245. https://doi.org/10.1016/j.jhazmat.2016.03.022Madu C, Kuei N, Lee P (2017) Urban sustainability management: a deep learning perspective. Sustain Cities Soc 30:1–17. https://doi.org/10.1016/j.scs.2016.12.012Mellos K (1988) Theory of eco-development. In: Perspectives on ecology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-19598-5_4Ni XY, Huang H, Du WP (2017) Relevance analysis and short-term prediction of PM2.5 concentrations in Beijing based on multi-source data. Atmos Environ 150:146–161. https://doi.org/10.1016/j.atmosenv.2016.11.054Oprea M, Dragomir E, Popescu M, Mihalache S (2016) Particulate matter air pollutants forecasting using inductive learning approach. Rev Chim 67:2075–2081Paas B, Stienen J, Vorländer M, Schneider Ch (2017) Modelling of urban near-road atmospheric PM concentrations using an artificial neural network approach with acoustic data input. Environments 4:1–25. https://doi.org/10.3390/environments4020026Pandey G, Zhang B, Jian L (2013) Predicting submicron air pollution indicators: a machine learning approach. Environ Sci Proc Impacts 15:996–1005. https://doi.org/10.1039/c3em30890aPeng H, Lima A, Teakles A, Jin J, Cannon A, Hsieh W (2017) Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods. Air Qual Atmos Health 10:195–211. https://doi.org/10.1007/s11869-016-0414-3Pérez-Ortíz M, de La Paz-Marín M, Gutiérrez PA, Hervás-Martínez C (2014) Classification of EU countries’ progress towards sustainable development based on ordinal regression techniques. Knowl Based Syst 66:178–189. https://doi.org/10.1016/j.knosys.2014.04.041Phillis Y, Kouikoglou V, Verdugo C (2017) Urban sustainability assessment and ranking of cities. Comput Environ Urban 64:254–265. https://doi.org/10.1016/j.compenvurbsys.2017.03.002Saeed S, Hussain L, Awan I, Idris A (2017) Comparative analysis of different statistical methods for prediction of PM2.5 and PM10 concentrations in advance for several hours. Int J Comput Sci Netw Secur 17:45–52Sayegh A, Munir S, Habeebullah T (2014) Comparing the performance of statistical models for predicting PM10 concentrations. Aerosol Air Qual Res 14:653–665. https://doi.org/10.4209/aaqr.2013.07.0259Shaban K, Kadri A, Rezk E (2016) Urban air pollution monitoring system with forecasting models. IEEE Sens J 16:2598–2606. https://doi.org/10.1109/JSEN.2016.2514378Sierra B (2006) Aprendizaje automático conceptos básicos y avanzados Aspectos prácticos utilizando el software Weka. Madrid Pearson Prentice Hall, MadridSingh K, Gupta S, Rai P (2013) Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos Environ 80:426–437. https://doi.org/10.1016/j.atmosenv.2013.08.023Song L, Pang S, Longley I, Olivares G, Sarrafzadeh A (2014) Spatio-temporal PM2.5 prediction by spatial data aided incremental support vector regression. In: International joint conference on neural networks. IEEE, Beijing, pp 623–630. https://doi.org/10.1109/IJCNN.2014.6889521Souza R, Coelho G, da Silva A, Pozza S (2015) Using ensembles of artificial neural networks to improve PM10 forecasts. Chem Eng Trans 43:2161–2166. https://doi.org/10.3303/CET1543361Suárez A, García PJ, Riesgo P, del Coz JJ, Iglesias-Rodríguez FJ (2011) Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain). Math Comput Model 54:453–1466. https://doi.org/10.1016/j.mcm.2011.04.017Tamas W, Notton G, Paoli C, Nivet M, Voyant C (2016) Hybridization of air quality forecasting models using machine learning and clustering: an original approach to detect pollutant peaks. Aerosol Air Qual Res 16:405–416. https://doi.org/10.4209/aaqr.2015.03.0193Toumi O, Le Gallo J, Ben Rejeb J (2017) Assessment of Latin American sustainability. Renew Sustain Energy Rev 78:878–885. https://doi.org/10.1016/j.rser.2017.05.013Tzima F, Mitkas P, Voukantsis D, Karatzas K (2011) Sparse episode identification in environmental datasets: the case of air quality assessment. Expert Syst Appl 38:5019–5027. https://doi.org/10.1016/j.eswa.2010.09.148United Nations, Department of Economic and Social Affairs (2019) World urbanization prospects The 2018 Revision. New York. https://doi.org/10.18356/b9e995fe-enWang B (2019) Applying machine-learning methods based on causality analysis to determine air quality in China. Pol J Environ Stud 28:3877–3885. https://doi.org/10.15244/pjoes/99639Wang X, Xiao Z (2017) Regional eco-efficiency prediction with support vector spatial dynamic MIDAS. J Clean Prod 161:165–177. https://doi.org/10.1016/j.jclepro.2017.05.077Wang W, Men C, Lu W (2008) Online prediction model based on support vector machine. Neurocomputing 71:550–558. https://doi.org/10.1016/j.neucom.2007.07.020WCED (1987) Report of the world commission on environment and development: our common future: report of the world commission on environment and development. WCED, Oslo. https://doi.org/10.1080/07488008808408783Weizhen H, Zhengqiang L, Yuhuan Z, Hua X, Ying Z, Kaitao L, Donghui L, Peng W, Yan M (2014) Using support vector regression to predict PM10 and PM2.5. In: IOP conference series: earth and environmental science, vol 17. IOP. https://doi.org/10.1088/1755-1315/17/1/012268WHO (2016) OMS | La OMS publica estimaciones nacionales sobre la exposición a la contaminación del aire y sus repercusiones para la salud. WHO. http://www.who.int/mediacentre/news/releases/2016/air-pollution-estimates/es/. Accesed 26 Nov 2018Yeganeh N, Shafie MP, Rashidi Y, Kamalan H (2012) Prediction of CO concentrations based on a hybrid partial least square and support vector machine model. Atmos Environ 55:357–365. https://doi.org/10.1016/j.atmosenv.2012.02.092Zalakeviciute R, Bastidas M, Buenaño A, Rybarczyk Y (2020) A traffic-based method to predict and map urban air quality. Appl Sci. https://doi.org/10.3390/app10062035Zeng L, Guo J, Wang B, Lv J, Wang Q (2019) Analyzing sustainability of Chinese coal cities using a decision tree modeling approach. Resour Policy 64:101501. https://doi.org/10.1016/j.resourpol.2019.101501Zhan Y, Luo Y, Deng X, Grieneisen M, Zhang M, Di B (2018) Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environ Pollut 233:464–473. https://doi.org/10.1016/j.envpol.2017.10.029Zhang Y, Huan Q (2006) Research on the evaluation of sustainable development in Cangzhou city based on neural-network-AHP. In: Proceedings of the fifth international conference on machine learning and cybernetics, vol 2006. pp 3144–3147. https://doi.org/10.1109/ICMLC.2006.258407Zhang Y, Shang W, Wu Y (2009) Research on sustainable development based on neural network. In: 2009 Chinese control and decision conference. IEEE, pp 3273–3276. https://doi.org/10.1109/CCDC.2009.5192476Zhou Y, Chang F-J, Chang L-Ch, Kao I-F, Wang YS (2019) Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J Clean Prod 209:134–145. https://doi.org/10.1016/j.jclepro.2018.10.24

    A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission

    Get PDF
    This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.Peer reviewedFinal Published versio

    A global observational analysis to understand changes in air quality during exceptionally low anthropogenic emission conditions

    Get PDF
    This global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015–2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM2.5, PM10, PMC (coarse fraction of PM), NO2, SO2, NOx, CO, O3 and the total gaseous oxidant (OX = NO2 + O3) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020. The analysis is based on in situ ground-based air quality observations at over 540 traffic, background and rural stations, from 63 cities and covering 25 countries over seven geographical regions of the world. Anomalies in the air pollutant concentrations (increases or decreases during 2020 periods compared to equivalent 2015–2019 periods) were calculated and the possible effects of meteorological conditions were analysed by computing anomalies from ERA5 reanalyses and local observations for these periods. We observed a positive correlation between the reductions in NO2 and NOx concentrations and peoples’ mobility for most cities. A correlation between PMC and mobility changes was also seen for some Asian and South American cities. A clear signal was not observed for other pollutants, suggesting that sources besides vehicular emissions also substantially contributed to the change in air quality. As a global and regional overview of the changes in ambient concentrations of key air quality species, we observed decreases of up to about 70% in mean NO2 and between 30% and 40% in mean PM2.5 concentrations over 2020 full lockdown compared to the same period in 2015–2019. However, PM2.5 exhibited complex signals, even within the same region, with increases in some Spanish cities, attributed mainly to the long-range transport of African dust and/or biomass burning (corroborated with the analysis of NO2/CO ratio). Some Chinese cities showed similar increases in PM2.5 during the lockdown periods, but in this case, it was likely due to secondary PM formation. Changes in O3 concentrations were highly heterogeneous, with no overall change or small increases (as in the case of Europe), and positive anomalies of 25% and 30% in East Asia and South America, respectively, with Colombia showing the largest positive anomaly of ~70%. The SO2 anomalies were negative for 2020 compared to 2015–2019 (between ~25 to 60%) for all regions. For CO, negative anomalies were observed for all regions with the largest decrease for South America of up to ~40%. The NO2/CO ratio indicated that specific sites (such as those in Spanish cities) were affected by biomass burning plumes, which outweighed the NO2 decrease due to the general reduction in mobility (ratio of ~60%). Analysis of the total oxidant (OX = NO2 + O3) showed that primary NO2 emissions at urban locations were greater than the O3 production, whereas at background sites, OX was mostly driven by the regional contributions rather than local NO2 and O3 concentrations. The present study clearly highlights the importance of meteorology and episodic contributions (e.g., from dust, domestic, agricultural biomass burning and crop fertilizing) when analysing air quality in and around cities even during large emissions reductions. There is still the need to better understand how the chemical responses of secondary pollutants to emission change under complex meteorological conditions, along with climate change and socio-economic drivers may affect future air quality. The implications for regional and global policies are also significant, as our study clearly indicates that PM2.5 concentrations would not likely meet the World Health Organization guidelines in many parts of the world, despite the drastic reductions in mobility. Consequently, revisions of air quality regulation (e.g., the Gothenburg Protocol) with more ambitious targets that are specific to the different regions of the world may well be required.World Meteorological Organization Global Atmospheric Watch programme is gratefully acknowledged for initiating and coordinating this study and for supporting this publication. We acknowledge the following projects for supporting the analysis contained in this article: Air Pollution and Human Health for an Indian Megacity project PROMOTE funded by UK NERC and the Indian MOES, Grant reference number NE/P016391/1; Regarding project funding from the European Commission, the sole responsibility of this publication lies with the authors. The European Commission is not responsible for any use that may be made of the information contained therein. This project has received funding from the European Commission’s Horizon 2020 research and innovation program under grant agreement No 874990 (EMERGE project). European Regional Development Fund (project MOBTT42) under the Mobilitas Pluss programme; Estonian Research Council (project PRG714); Estonian Research Infrastructures Roadmap project Estonian Environmental Observatory (KKOBS, project 2014-2020.4.01.20-0281). European network for observing our changing planet project (ERAPLANET, grant agreement no. 689443) under the European Union’s Horizon 2020 research and innovation program, Estonian Ministry of Sciences projects (grant nos. P180021, P180274), and the Estonian Research Infrastructures Roadmap project Estonian Environmental Observatory (3.2.0304.11-0395). Eastern Mediterranean and Middle East—Climate and Atmosphere Research (EMME-CARE) project, which has received funding from the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 856612) and the Government of Cyprus. INAR acknowledges support by the Russian government (grant number 14.W03.31.0002), the Ministry of Science and Higher Education of the Russian Federation (agreement 14.W0331.0006), and the Russian Ministry of Education and Science (14.W03.31.0008). We are grateful to to the following agencies for providing access to data used in our analysis: A.M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences; Agenzia Regionale per la Protezione dell’Ambiente della Campania (ARPAC); Air Quality and Climate Change, Parks and Environment (MetroVancouver, Government of British Columbia); Air Quality Monitoring & Reporting, Nova Scotia Environment (Government of Nova Scotia); Air Quality Monitoring Network (SIMAT) and Emission Inventory, Mexico City Environment Secretariat (SEDEMA); Airparif (owner & provider of the Paris air pollution data); ARPA Lazio, Italy; ARPA Lombardia, Italy; Association Agr´e´ee de Surveillance de la Qualit´e de l’Air en ˆIle-de- France AIRPARIF / Atmo-France; Bavarian Environment Agency, Germany; Berlin Senatsverwaltung für Umwelt, Verkehr und Klimaschutz, Germany; California Air Resources Board; Central Pollution Control Board (CPCB), India; CETESB: Companhia Ambiental do Estado de S˜ao Paulo, Brazil. China National Environmental Monitoring Centre; Chandigarh Pollution Control Committee (CPCC), India. DCMR Rijnmond Environmental Service, the Netherlands. Department of Labour Inspection, Cyprus; Department of Natural Resources Management and Environmental Protection of Moscow. Environment and Climate Change Canada; Environmental Monitoring and Science Division Alberta Environment and Parks (Government of Alberta); Environmental Protection Authority Victoria (Melbourne, Victoria, Australia); Estonian Environmental Research Centre (EERC); Estonian University of Life Sciences, SMEAR Estonia; European Regional Development Fund (project MOBTT42) under the Mobilitas Pluss programme; Finnish Meteorological Institute; Helsinki Region Environmental Services Authority; Haryana Pollution Control Board (HSPCB), IndiaLondon Air Quality Network (LAQN) and the Automatic Urban and Rural Network (AURN) supported by the Department of Environment, Food and Rural Affairs, UK Government; Madrid Municipality; Met Office Integrated Data Archive System (MIDAS); Meteorological Service of Canada; Minist`ere de l’Environnement et de la Lutte contre les changements climatiques (Gouvernement du Qu´ebec); Ministry of Environment and Energy, Greece; Ministry of the Environment (Chile) and National Weather Service (DMC); Moscow State Budgetary Environmental Institution MOSECOMONITORING. Municipal Department of the Environment SMAC, Brazil; Municipality of Madrid public open data service; National institute of environmental research, Korea; National Meteorology and Hydrology Service (SENAMHI), Peru; New York State Department of Environmental Conservation; NSW Department of Planning, Industry and Environment; Ontario Ministry of the Environment, Conservation and Parks, Canada; Public Health Service of Amsterdam (GGD), the Netherlands. Punjab Pollution Control Board (PPCB), India. R´eseau de surveillance de la qualit´e de l’air (RSQA) (Montr´eal); Rosgydromet. Mosecomonitoring, Institute of Atmospheric Physics, Russia; Russian Foundation for Basic Research (project 20–05–00254) SAFAR-IITM-MoES, India; S˜ao Paulo State Environmental Protection Agency, CETESB; Secretaria de Ambiente, DMQ, Ecuador; Secretaría Distrital de Ambiente, Bogot´a, Colombia. Secretaria Municipal de Meio Ambiente Rio de Janeiro; Mexico City Atmospheric Monitoring System (SIMAT); Mexico City Secretariat of Environment, Secretaría del Medio Ambiente (SEDEMA); SLB-analys, Sweden; SMEAR Estonia station and Estonian University of Life Sciences (EULS); SMEAR stations data and Finnish Center of Excellence; South African Weather Service and Department of Environment, Forestry and Fisheries through SAAQIS; Spanish Ministry for the Ecological Transition and the Demographic Challenge (MITECO); University of Helsinki, Finland; University of Tartu, Tahkuse air monitoring station; Weather Station of the Institute of Astronomy, Geophysics and Atmospheric Science of the University of S˜ao Paulo; West Bengal Pollution Control Board (WBPCB).http://www.elsevier.com/locate/envintam2023Geography, Geoinformatics and Meteorolog

    Gradient Boosting Machine to Assess the Public Protest Impact on Urban Air Quality

    No full text
    Political and economic protests build-up due to the financial uncertainty and inequality spreading throughout the world. In 2019, Latin America took the main stage in a wave of protests. While the social side of protests is widely explored, the focus of this study is the evolution of gaseous urban air pollutants during and after one of these events. Changes in concentrations of NO2, CO, O3 and SO2 during and after the strike, were studied in Quito, Ecuador using two approaches: (i) inter-period observational analysis; and (ii) machine learning (ML) gradient boosting machine (GBM) developed business-as-usual (BAU) comparison to the observations. During the strike, both methods showed a large reduction in the concentrations of NO2 (31.5&ndash;32.36%) and CO (15.55&ndash;19.85%) and a slight reduction for O3 and SO2. The GBM approach showed an exclusive potential, especially for a lengthier period of predictions, to estimate strike impact on air quality even after the strike was over. This advocates for the use of machine learning techniques to estimate an extended effect of changes in human activities on urban gaseous pollution

    Air Quality in Quito during COVID-19 outbreak

    No full text
    In early 2020, the human population of the world confronted a great challenge – a pandemic of a novel Corona Virus disease (COVID-19). In order to protect the population, precautionary quarantine measures were implemented in almost all countries by March 2020, which focuses on social isolation and distancing through a strict limitation of anthropogenic activities: traffic, social gatherings, industries, etc. In turn, this epidemiologic emergency has resulted in reduced environmental pollution. It is necessary to quantify the effect of these measures on the urban air pollution in the Ecuadorian capital - Quito and its spatial variations, as toxic pollution tends to aggravate the body’s response to the respiratory diseases, including COVID-19. The data &quot;QuitoDATA_2020.xlsx&quot; contains atmospheric information for Quito starting January 1 and ending April 12, 2020, englobing a few months before the quarantine and four weeks of quarantine. This data is acquired from the urban air quality monitoring network run by the local Secretariat of the Environment. This high-quality monitoring data network is run strictly following the recommendations of the Environmental Protection Agency (EPA) using standard EPA methods (http://www.quitoambiente.gob.ec/ambiente/). Daily average data is organized per study site (Belisario, Carapungo, Centro, Cotocollao, Camal, Guamani and Chillos) and also is averaged over the city (Quito)). The data confirms a great reduction (29-68%) in major urban pollutants (nitrogen dioxide - NO2, sulfur dioxide - SO2, particulate matter with aerodynamic diameters ≤ 2.5 µm - PM2.5 and carbon monoxide - CO). Important meteorological parameters (hourly precipitation (Rain) and wind speed (WS)) are also presented in order to help support the discussion. These data show that the reduction in air pollution levels is not due to extremely different environmental conditions, but actually due to the quarantine measures. The spatial evolution of atmospheric pollution is also studied for Quito and Ecuador, using observed surface and satellite data. This data is presented in “data_NO2_SO2_S5P.xlsx” and S5P data “NO2 DATA S5P.rar” and “SO2 DATA S5P.rar”. The Sentinel 5 Precursor TROPOMI satellite, is the most advanced equipment on earth, is provided with spectral sensors capable of detecting concentrations of polluting gases such as NO2, SO2, O3, CO, CH4, Formaldehydes and Aerosols in profile, with a daily temporality; data are available from 2018 and are granted by the Royal Netherlands Meteorological Research Institute (KNMI). For this research we used the Google Engine (GGE) platform which allows downloading L3 level products, GGE uses HARP commands which gives us images with 1km per pixel resolution.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV
    • …
    corecore