41 research outputs found

    Atom-molecule collisions in an optically trapped gas

    Full text link
    Cold inelastic collisions between confined cesium (Cs) atoms and Cs_2\_2 molecules are investigated inside a CO_2\_2 laser dipole trap. Inelastic atom-molecule collisions can be observed and measured with a rate coefficient of 2.5×1011\sim 2.5 \times 10^{-11} cm3^3 s1^{-1}, mainly independent of the molecular ro-vibrational state populated. Lifetimes of purely atomic and molecular samples are essentially limited by rest gas collisions. The pure molecular trap lifetime ranges 0,3-1 s, four times smaller than the atomic one, as is also observed in a pure magnetic trap. We give an estimation of the inelastic molecule-molecule collision rate to be 1011\sim 10^{-11} cm3^{3} s1^{-1}

    Experimental investigation of ultracold atom-molecule collisions

    Full text link
    Ultracold collisions between Cs atoms and Cs2 dimers in the electronic ground state are observed in an optically trapped gas of atoms and molecules. The Cs2 molecules are formed in the triplet ground state by cw-photoassociation through the outer well of the 0g-(P3/2) excited electronic state. Inelastic atom-molecule collisions converting internal excitation into kinetic energy lead to a loss of Cs2 molecules from the dipole trap. Rate coefficients are determined for collisions involving Cs atoms in either the F=3 or F=4 hyperfine ground state and Cs2 molecules in either highly vibrationally excited states (v'=32-47) or in low vibrational states (v'=4-6) of the a ^3 Sigma_u^+ triplet ground state. The rate coefficients beta ~10^{-10} cm^3/s are found to be largely independent of the vibrational and rotational excitation indicating unitary limited cross sections.Comment: 4 pages, 3 figures, submitted for publicatio

    Star clusters dynamics in a laboratory: electrons in an ultracold plasma

    Full text link
    Electrons in a spherical ultracold quasineutral plasma at temperature in the Kelvin range can be created by laser excitation of an ultra-cold laser cooled atomic cloud. The dynamical behavior of the electrons is similar to the one described by conventional models of stars clusters dynamics. The single mass component, the spherical symmetry and no stars evolution are here accurate assumptions. The analog of binary stars formations in the cluster case is three-body recombination in Rydberg atoms in the plasma case with the same Heggie's law: soft binaries get softer and hard binaries get harder. We demonstrate that the evolution of such an ultracold plasma is dominated by Fokker-Planck kinetics equations formally identical to the ones controlling the evolution of a stars cluster. The Virial theorem leads to a link between the plasma temperature and the ions and electrons numbers. The Fokker-Planck equation is approximate using gaseous and fluid models. We found that the electrons are in a Kramers-Michie-King's type quasi-equilibrium distribution as stars in clusters. Knowing the electron distribution and using forced fast electron extraction we are able to determine the plasma temperature knowing the trapping potential depth.Comment: Submitted to MNRA

    Dual-wavelength laser source for onboard atom interferometry

    Full text link
    We present a compact and stable dual-wavelength laser source for onboard atom interferometry with two different atomic species. It is based on frequency-doubled telecom lasers locked on a femtosecond optical frequency comb. We take advantage of the maturity of fiber telecom technology to reduce the number of free-space optical components which are intrinsically less stable, and to make the setup immune to vibrations and thermal fluctuations. The source provides the frequency agility and phase stability required for atom interferometry and can easily be adapted to other cold atom experiments. We have shown its robustness by achieving the first dual-species K-Rb magneto optical trap in microgravity during parabolic flights

    Dark resonances for ground state transfer of molecular quantum gases

    Full text link
    One possible way to produce ultracold, high-phase-space-density quantum gases of molecules in the rovibronic ground state is given by molecule association from quantum-degenerate atomic gases on a Feshbach resonance and subsequent coherent optical multi-photon transfer into the rovibronic ground state. In ultracold samples of Cs_2 molecules, we observe two-photon dark resonances that connect the intermediate rovibrational level |v=73,J=2> with the rovibrational ground state |v=0,J=0> of the singlet X1Σg+X^1\Sigma_g^+ ground state potential. For precise dark resonance spectroscopy we exploit the fact that it is possible to efficiently populate the level |v=73,J=2> by two-photon transfer from the dissociation threshold with the stimulated Raman adiabatic passage (STIRAP) technique. We find that at least one of the two-photon resonances is sufficiently strong to allow future implementation of coherent STIRAP transfer of a molecular quantum gas to the rovibrational ground state |v=0,J=0>.Comment: 7 pages, 4 figure

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies
    corecore