19 research outputs found

    ATLANTIC-PRIMATES: a dataset of communities and occurrences of primates in the Atlantic Forests of South America

    Get PDF
    Primates play an important role in ecosystem functioning and offer critical insights into human evolution, biology, behavior, and emerging infectious diseases. There are 26 primate species in the Atlantic Forests of South America, 19 of them endemic. We compiled a dataset of 5,472 georeferenced locations of 26 native and 1 introduced primate species, as hybrids in the genera Callithrix and Alouatta. The dataset includes 700 primate communities, 8,121 single species occurrences and 714 estimates of primate population sizes, covering most natural forest types of the tropical and subtropical Atlantic Forest of Brazil, Paraguay and Argentina and some other biomes. On average, primate communities of the Atlantic Forest harbor 2 ± 1 species (range = 1–6). However, about 40% of primate communities contain only one species. Alouatta guariba (N = 2,188 records) and Sapajus nigritus (N = 1,127) were the species with the most records. Callicebus barbarabrownae (N = 35), Leontopithecus caissara (N = 38), and Sapajus libidinosus (N = 41) were the species with the least records. Recorded primate densities varied from 0.004 individuals/km 2 (Alouatta guariba at Fragmento do Bugre, ParanĂĄ, Brazil) to 400 individuals/km 2 (Alouatta caraya in Santiago, Rio Grande do Sul, Brazil). Our dataset reflects disparity between the numerous primate census conducted in the Atlantic Forest, in contrast to the scarcity of estimates of population sizes and densities. With these data, researchers can develop different macroecological and regional level studies, focusing on communities, populations, species co-occurrence and distribution patterns. Moreover, the data can also be used to assess the consequences of fragmentation, defaunation, and disease outbreaks on different ecological processes, such as trophic cascades, species invasion or extinction, and community dynamics. There are no copyright restrictions. Please cite this Data Paper when the data are used in publications. We also request that researchers and teachers inform us of how they are using the data. © 2018 by the The Authors. Ecology © 2018 The Ecological Society of Americ

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Automated machine learning model for fundus image classification by health-care professionals with no coding experience

    No full text
    Abstract To assess the feasibility of code-free deep learning (CFDL) platforms in the prediction of binary outcomes from fundus images in ophthalmology, evaluating two distinct online-based platforms (Google Vertex and Amazon Rekognition), and two distinct datasets. Two publicly available datasets, Messidor-2 and BRSET, were utilized for model development. The Messidor-2 consists of fundus photographs from diabetic patients and the BRSET is a multi-label dataset. The CFDL platforms were used to create deep learning models, with no preprocessing of the images, by a single ophthalmologist without coding expertise. The performance metrics employed to evaluate the models were F1 score, area under curve (AUC), precision and recall. The performance metrics for referable diabetic retinopathy and macular edema were above 0.9 for both tasks and CFDL. The Google Vertex models demonstrated superior performance compared to the Amazon models, with the BRSET dataset achieving the highest accuracy (AUC of 0.994). Multi-classification tasks using only BRSET achieved similar overall performance between platforms, achieving AUC of 0.994 for laterality, 0.942 for age grouping, 0.779 for genetic sex identification, 0.857 for optic, and 0.837 for normality with Google Vertex. The study demonstrates the feasibility of using automated machine learning platforms for predicting binary outcomes from fundus images in ophthalmology. It highlights the high accuracy achieved by the models in some tasks and the potential of CFDL as an entry-friendly platform for ophthalmologists to familiarize themselves with machine learning concepts

    Diabetic Retinopathy Labeling Protocol for the Brazilian Multilabel Ophthalmological Dataset

    No full text
    The grading of diabetic patients within the Brazilian Multilabel Ophthalmological Dataset was performed using this diabetic retinopathy (DR) grading protocol developed to align with established DR classifications. DR, a prevalent complication of diabetes, is a leading cause of blindness among working-age adults. Early diagnosis and intervention are crucial for preventing vision loss. Various classification systems, including the ICDR and the Scottish Diabetic Retinopathy Classification scheme, contribute to the classification landscape. This protocol aimed to create a specialized dataset for training and evaluating supervised artificial intelligence algorithms using retinal fundus photos. The delineation of key retinal findings assumes paramount importance in diagnosis, encompassing microaneurysms, retinal hemorrhages, hard exudates, intraretinal microvascular abnormalities, venous beading, new vessels at the disc, new vessels elsewhere, fibrous proliferation, pre-retinal and vitreous hemorrhages, and photocoagulation scars

    Effects of Surface Treatments on Mechanics Behavior of Sintered and Pre-sintered Yttria-Stabilized Zirconia and Reliability of Crowns and Abutments Processed by CAD/CAM

    Get PDF
    Purpose: This study evaluated the micro shear bond strength of resin cement to an yttria-stabilized zirconia ceramic and the survival probability of zirconia abutments and crowns after different surface treatments through a fatigue test. Materials and Methods: The study was divided into two parts. For part 1, 95 zirconia disks were divided into five groups (n = 19): control, untreated, airborne particle abrasion with Al2O3 particles before sintering, airborne particle abrasion with Al2O3 particles after sintering, silicatization before sintering, and silicatization after sintering. Three samples of each group were used for evaluation of surface roughness by confocal laser scanning microscopy and afterward were prepared for surface microstructural analysis by scanning electron microscopy. Ten samples of each group were subjected to micro shear bond strength testing, and the interfaces of the remaining six were examined by scanning electron microscopy. In part 2, 70 external hex zirconia abutments and copings were made by computer-aided design/computeraided manufacturing (n = 14). Marginal fit of abutment/coping was measured in a confocal laser scanning microscope. Afterward, a fatigue test was carried out with progressive load of 80 up to 320 N (40 N steps), 5 Hz frequency, and 20,000 cycles at each step. Thermal cycling was simultaneously performed (5 degrees C to 55 degrees C). Results: The group treated after sintering with SiO achieved statistically higher micro shear bond strength (P <.01). Higher failure loads were associated with a combined failure. The surface changes in the group treated with SiO before sintering suggest silica deposition, and there was a lack of homogeneity, which was more evident on the surface of the groups treated before sintering. The marginal gap was higher for the group treated before sintering with SiO (P <.01), and the survival probability of the sets was similar for all tested groups (P = .57). Conclusion: The micro shear bond strength to zirconia was improved after silicatization after sintering, but the survival probability of crown/abutment/implant sets was not affected by different surface treatments

    Fairness and generalizability of OCT normative databases: a comparative analysis

    No full text
    Abstract Purpose In supervised Machine Learning algorithms, labels and reports are important in model development. To provide a normality assessment, the OCT has an in-built normative database that provides a color base scale from the measurement database comparison. This article aims to evaluate and compare normative databases of different OCT machines, analyzing patient demographic, contrast inclusion and exclusion criteria, diversity index, and statistical approach to assess their fairness and generalizability. Methods Data were retrieved from Cirrus, Avanti, Spectralis, and Triton’s FDA-approval and equipment manual. The following variables were compared: number of eyes and patients, inclusion and exclusion criteria, statistical approach, sex, race and ethnicity, age, participant country, and diversity index. Results Avanti OCT has the largest normative database (640 eyes). In every database, the inclusion and exclusion criteria were similar, including adult patients and excluding pathological eyes. Spectralis has the largest White (79.7%) proportionately representation, Cirrus has the largest Asian (24%), and Triton has the largest Black (22%) patient representation. In all databases, the statistical analysis applied was Regression models. The sex diversity index is similar in all datasets, and comparable to the ten most populous contries. Avanti dataset has the highest diversity index in terms of race, followed by Cirrus, Triton, and Spectralis. Conclusion In all analyzed databases, the data framework is static, with limited upgrade options and lacking normative databases for new modules. As a result, caution in OCT normality interpretation is warranted. To address these limitations, there is a need for more diverse, representative, and open-access datasets that take into account patient demographics, especially considering the development of supervised Machine Learning algorithms in healthcare

    Fairness and generalisability in deep learning of retinopathy of prematurity screening algorithms: a literature review

    No full text
    Background Retinopathy of prematurity (ROP) is a vasoproliferative disease responsible for more than 30 000 blind children worldwide. Its diagnosis and treatment are challenging due to the lack of specialists, divergent diagnostic concordance and variation in classification standards. While artificial intelligence (AI) can address the shortage of professionals and provide more cost-effective management, its development needs fairness, generalisability and bias controls prior to deployment to avoid producing harmful unpredictable results. This review aims to compare AI and ROP study’s characteristics, fairness and generalisability efforts.Methods Our review yielded 220 articles, of which 18 were included after full-text assessment. The articles were classified into ROP severity grading, plus detection, detecting treatment requiring, ROP prediction and detection of retinal zones.Results All the article’s authors and included patients are from middle-income and high-income countries, with no low-income countries, South America, Australia and Africa Continents representation.Code is available in two articles and in one on request, while data are not available in any article. 88.9% of the studies use the same retinal camera. In two articles, patients’ sex was described, but none applied a bias control in their models.Conclusion The reviewed articles included 180 228 images and reported good metrics, but fairness, generalisability and bias control remained limited. Reproducibility is also a critical limitation, with few articles sharing codes and none sharing data. Fair and generalisable ROP and AI studies are needed that include diverse datasets, data and code sharing, collaborative research, and bias control to avoid unpredictable and harmful deployments

    Artificial intelligence for telemedicine diabetic retinopathy screening: a review

    No full text
    AbstractPurpose This study aims to compare artificial intelligence (AI) systems applied in diabetic retinopathy (DR) teleophthalmology screening, currently deployed systems, fairness initiatives and the challenges for implementation.Methods The review included articles retrieved from PubMed/Medline/EMBASE literature search strategy regarding telemedicine, DR and AI. The screening criteria included human articles in English, Portuguese or Spanish and related to telemedicine and AI for DR screening. The author’s affiliations and the study’s population income group were classified according to the World Bank Country and Lending Groups.Results The literature search yielded a total of 132 articles, and nine were included after full-text assessment. The selected articles were published between 2004 and 2020 and were grouped as telemedicine systems, algorithms, economic analysis and image quality assessment. Four telemedicine systems that perform a quality assessment, image preprocessing and pathological screening were reviewed. A data and post-deployment bias assessment are not performed in any of the algorithms, and none of the studies evaluate the social impact implementations. There is a lack of representativeness in the reviewed articles, with most authors and target populations from high-income countries and no low-income country representation.Conclusions Telemedicine and AI hold great promise for augmenting decision-making in medical care, expanding patient access and enhancing cost-effectiveness. Economic studies and social science analysis are crucial to support the implementation of AI in teleophthalmology screening programs. Promoting fairness and generalizability in automated systems combined with telemedicine screening programs is not straightforward. Improving data representativeness, reducing biases and promoting equity in deployment and post-deployment studies are all critical steps in model development
    corecore