539 research outputs found

    Contact characteristics of viscoelastic bonded layers

    Get PDF
    AbstractA viscoelastic layered contact model has successfully been developed and solved analytically. The single layered linear viscoelastic material is assumed to be perfectly bonded to a rigid substrate in contact with a rigid indenter without friction under a step load. Two cases are considered: (a) a compressible layered material with a typical Poisson's ratio of 0.4 and (b) an incompressible layer with a Poisson's ratio of 0.5. Two viscoelastic models: Maxwell and three element standard linear solid are investigated. This paper highlights the methodology employed and the results obtained under various conditions

    Valve-train dynamics: a simplified tribo-elasto-multi-body analysis

    Get PDF
    This paper presents a model of a cycloidal cam-flat follower pair. The model incorporates the inertial elements, the assembly constraint functions and the sources of compliance in the valve train. The sources of compliance include the valve spring characteristics, including the spring surge effect under dynamic conditions, as well as the contact compliance between the cam and the flat follower. The contact domain is treated as a counterformal concentrated lubricated region subjected to an elasto-hydrodynamic regime of lubrication (EHL). The prevailing contact geometry is one of finite line contact. The paper presents the results of simultaneous solution of the Lagrangian dynamics for the non-linear constrained system, together with an approximate quasi-static elastohydrodynamic solution of the lubricated contact conjunction at each time step by an extrapolated oil-film thickness formula for combined entraining and squeeze film action. The effect of spring surge on the contact separation and residual vibrations of the system are investigated, as well as the lubricant pressure distribution and film thickness, including during start-up and acceleration

    Elastohydrodynamic solution for concentrated elliptical point contact of machine elements under combined entraining and squeeze-film motion

    Get PDF
    This paper presents numerical solution of isothermal elastohydrodynamic conjunction for concentrated contact of elastic bodies under the elliptical point contact condition. The solution includes the effect of squeeze-film motion that occurs under transient conditions due to the application of cyclic loads and/or oscillating motions in machine elements. It is shown that this time-dependent behaviour increases the load-carrying capacity of the contact which is largely responsible as a mechanism of lubricant film formation when the low speeds of entraining motion yield a low film thickness. An extrapolated oil-film thickness formula is also presented that can be employed under dynamic conditions

    Prediction of oil-film thickness and shape in elliptical point contacts under combined rolling and sliding motion

    Get PDF
    The paper presents a numerical solution for elliptical point contact conjunctions under combined rolling and sliding motion. This condition is prevalent in many practical applications, such as rolling element bearings and conformal gears. An effective influence Newton–Raphson method is employed in local point distributed or global line distributed low-relaxation iterations. This method enables determination of the pressure distribution and film shape at high loads such as are encountered in many practical applications. Some of the numerical predictions have been validated against experimental results

    Transient analysis of isothermal elastohydrodynamic circular point contacts

    Get PDF
    In this paper a solution method is presented for the transient isothermal elastohydrodynamic lubrication of point contact conjunctions, based upon the Newton-Raphson scheme and low iteration relaxation. The numerical results are compared with the numerical and experimental observations of others for the circular point contact of a ball against a flat glass disc under oscillating conditions. Good agreement has been found with other numerical solutions. The comparison with the experimental results shows good qualitative agreement

    Crystal structure, impedance and broadband dielectric spectra of ordered scheelite-structured Bi(Sc1/3Mo2/3)O4 ceramic

    Get PDF
    Bi(Sc 1/3 Mo 2/3 )O 4 ceramics were prepared via solid state reaction method. It crystallized with an ordered scheelite-related structure (a = 16.9821(9) Å, b = 11.6097(3) Å, c = 5.3099(3) Å and β = 104.649(2)°) with a space group C12/C1, in which Bi 3+ , Sc 3+ and Mo 6+ are -8, -6 and -4 coordinated, respectively. Bi(Sc 1/3 Mo 2/3 )O 4 ceramics were densifiedat 915 °C, giving a permittivity (ε r ) 24.4, quality factor (Qf, Q = 1/dielectric loss, f = resonant frequency) ~48, 100 GHz and temperature coefficient of resonant frequency (TCF) -68 ppm/°C. Impedance spectroscopy revealed that there was only a bulk response for conductivity with activation energy (E a ) ~0.97 eV, suggesting the compound is electrically and chemically homogeneous. Wide band dielectric spectra were employed to study the dielectric response of Bi(Sc 1/3 Mo 2/3 )O 4 from 20 Hz to 30 THz. ε r was stable from 20 Hz to the GHz region, in which only ionic and electron displacive polarization contributed to the ε r

    The fermion dynamical symmetry model for the even--even and even--odd nuclei in the Xe--Ba region

    Full text link
    The even--even and even--odd nuclei 126^{126}Xe-132^{132}Xe and 131^{131}Ba-137^{137}Ba are shown to have a well-realized SO8SO6SO3SO_8 \supset SO_6 \supset SO_3 fermion dynamical symmetry. Their low-lying energy levels can be described by a unified analytical expression with two (three) adjustable parameters for even--odd (even--even) nuclei that is derived from the fermion dynamical symmetry model. Analytical expressions are given for wavefunctions and for E2E2 transition rates that agree well with data. The distinction between the FDSM and IBM SO6SO_6 limits is discussed. The experimentally observed suppression of the the energy levels with increasing SO5SO_5 quantum number τ\tau can be explained as a perturbation of the pairing interaction on the SO6SO_6 symmetry, which leads to an SO5SO_5 Pairing effect for SO6SO_6 nuclei.Comment: submitted to Phys. Rev. C, LaTeX, 31 pages, 8 figures with postscript files available on request at [email protected]

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Search for Anomalous Couplings in the Higgs Sector at LEP

    Get PDF
    Anomalous couplings of the Higgs boson are searched for through the processes e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70 GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity collected with the L3 detector at LEP at centre-of-mass energies sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H -> Z\gamma and H -> WW^(*) are considered and no evidence is found for anomalous Higgs production or decay. Limits on the anomalous couplings d, db, Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H -> gamma gamma and H -> Z gamma decay rates

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation
    corecore