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Elastohydrodynamic solution for concentrated
elliptical point contact of machine elements under
combined entraining and squeeze-film motion

D Jalali-Vahid, H Rahnejat and Z M Jin

Department of Mechanical and Manufacturing Engineering, University of Bradford

Abstract: This paper presents numerical solution of isothermal elastohydrodynamic conjunction for

concentrated contact of elastic bodies under the elliptical point contact condition. The solution includes the

effect of squeeze-film motion that occurs under transient conditions due to the application of cyclic loads

and/or oscillating motions in machine elements. It is shown that this time-dependent behaviour increases

the load-carrying capacity of the contact which is largely responsible as a mechanism of lubricant film

formation when the low speeds of entraining motion yield a low film thickness. An extrapolated oil-film

thickness formula is also presented that can be employed under dynamic conditions.
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NOTATION

a semimajor axis of the contact ellipse in the

transverse direction

b semiminor axis of the contact ellipse in the

entraining direction

A, B, C, N, L, M

relaxation coefficients

c number of divisions in the semimajor axis

d number of divisions in the semiminor axis

E modulus of elasticity

E9 equivalent Young's modulus

� 2=[(1ÿ í2
A)=EA � (1ÿ í2

B)=EB]

G� material parameter � áE 9
h film thickness

h dimensionless film thickness

H0 constant

dh=dt squeeze velocity

K ellipticity parameter � a=b

l constant used to determine the length of the

side leakage region

m constant used to determine the length of the

inlet region

n constant used to determine the length of the

outlet region

P pressure

P dimensionless pressure

Rx equivalent radius of contact in the x direction

Ry equivalent radius of contact in the y direction

S� dimensionless squeeze velocity

� ç0(dh=dt)=(E9Rx)

t time

t dimensionless time � E9U� t=ç0

u mean speed component in the x direction

U� dimensionless speed � uç0=(E9Rx)

W normal applied load

W normal computed load

W� dimensionless load � W=(E9R2
x)

x Cartesian coordinate

x � x=b

y Cartesian coordinate

y � y=a

Z viscosity pressure index

á pressure±viscosity coefficient

ä total elastic deformation

ç lubricant viscosity

ç dimensionless lubricant viscosity

ç0 atmospheric viscosity

ë over-relaxation factor

ì � r=ç
í Poisson's ratio

r lubricant density

r0 atmospheric density

r dimensionless density
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1 INTRODUCTION

Point contact elastohydrodynamic lubrication (EHL) condi-

tions occur in the counterformal contact of many machine

elements such as balls to races contacts. Throughout the

past three decades there have been various solutions for

these conditions reported in the literature. These include

the initial solution surmised by Grubin [1] which has since

been confirmed both experimentally [2±4] and by numer-

ical solutions of pressure distributions and the correspond-

ing film shapes [5±10]. Important features of these

observations and the corresponding numerical solutions are

the flat film shape in the Hertzian region and the

conformity of the pressure profile to the elastostatic

Hertzian pressure profile. The occurrence of the dip in the

film thickness at the exit constriction and the correspond-

ing secondary pressure spike in this region have been

widely investigated, particularly because of the significant

effect that the pressure spike has on the subsurface stress

field and the fatigue life of rolling and sliding members

[11, 12].

Another less attempted problem in the contact of

machine elements is the application of periodic normal

loads or motions that occur as the result of vibrations or

chatter. These sources of excitation give rise to the normal

approach or separation of contacting elastic bodies which

in turn induce a squeeze action upon the lubricant film.

Some of the published works include the effect of squeeze-

film action on the pressure distribution and the lubricant

film thickness. In 1962, Christensen [13] provided the first

numerical solution to the problem of pure squeeze under

the line contact EHL condition. A point contact EHL

solution for pure normal motion was later presented by

Christensen [14] in 1970. A subsequent pure squeeze

solution for materials of low elastic modulus under the

isoviscous point contact condition was presented by

Herrebrugh [15] in 1970.

Experimental investigation of an impacting ball on a

plane, leading to the pure squeeze EHL point contact

condition has been carried out by Dowson and Jones [16]

in 1967±8, Paul and Cameron [17] in 1972, and Safa and

Gohar [18] in 1986. Numerical solutions for combined

squeeze and entraining motion under the EHL condition

have been reported by various researchers, including

Bedewi et al. [19], and Lee and Hamrock [20] for line

contact conditions, Mostofi and Gohar [21] for the point

contact condition, and Rahnejat [22] for the finite line

contact condition. A feature of all these solutions has

been the inclusion of a constant squeeze-film velocity in

the normal approach of contiguous bodies. This leads to an

approximation for the dynamic behaviour of the lubricated

contact under cyclic loads.

However, in order to simulate the non-steady state effects

in lubricated contacts (as in the case of an impacting ball in

references [16±18]) a dynamic solution of the EHL

problem is required. Such solutions have recently been

reported by Dowson and Wang [23] for the impact of a ball

on a lubricated layer under the pure squeeze condition, and

by Wijnant and Venner [24] for the impact of a ball under a

combined entraining and squeeze-film motion. The former

observed a nearly constant film thickness during the impact

as well as the very modest contribution of viscous damping

during the entire dynamic process. Significantly, the

normal approach±depart velocity was found to be consid-

erably lower than the initial velocity of the impact, and the

pressure distribution closely conforms to the steady state

EHL conjunction under the pure squeeze condition, a

feature that has been observed experimentally by Safa and

Gohar [18]. The deviation of their non-steady state solution

from that of a steady state solution has been the occurrence

of an unusually high pressure spike at the outset of ball

impact. Wijnant and Venner [24] have also shown that, for

the case where the entraining speeds of contacting bodies

are much larger than the squeeze velocity, the non-steady

state problem reduces to the solution of steady state EHL.

However, for larger impacting velocities the steady and

non-steady state solutions may diverge.

Other solutions, incorporating the squeeze-film action

have been undertaken for specific applications, such as for

a piston ring by Dowson et al. [25], who incorporated the

inertial effect under dynamic conditions. They observed

that for most of the piston cycle the effect of the squeeze-

film action was insignificant. Other solutions for a cam±

follower under the line contact condition have been

reported by Matthews and Sadeghi [26], Dowson et al. [27]

and Mei and Xie [28].

While the non-steady state solutions of the EHL problem

are desired, e.g. for dynamics of rolling element to races

contacts under oscillating conditions, the solution is often

quite time intensive. Furthermore, for low squeeze±roll

speed ratios and small load perturbations which are typical

of many bearing applications a steady state solution with a

low value of representative squeeze velocity should suffice.

Typical values of squeeze velocity in many EHL

applications are of the order of thousandths to hundredths

of the speed of entraining motion, as indicated in reference

[23] as well as by the experimental evidence of nearly

steady state pressure traces in references [17] and [18].

Therefore, there exists a subclass of EHL problems at low

squeeze±roll speed ratios and low fluctuating contact loads

where steady state EHL or rolling and squeeze-film motion

approximates the non-steady state solution very closely.

This has been corroborated by numerical solution of a

wavy surfaced disc EHL problem, obtaining the instanta-

neous lubricant reaction from an extrapolated oil-film

equation in steps of time by Mehdigoli et al. [29], the

results of which conform very closely with the experi-

mental work of Dareing and Johnson [30]. The fact that this

has been shown to be the case forms the basis for this paper

which presents the EHL of elliptical contacts under

combined entraining and squeeze-film action at low

squeeze velocities and low to moderate loads. A new

lubricant film thickness regression formula is also pre-

sented that includes the effect of squeeze-film action.
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2 THEORETICAL FORMULATION

The following governing equations are employed for

solution of the problem of rolling and normally approach-

ing an elastohydrodynamic point contact:

2.1 The Reynolds equation

The general Reynolds equation for EHL of point contacts

with entraining motion in the x direction in dimensionless

form is written as

@

@x

rh3

ç

@P

@x

 !
� @

@ y

rh3

ç

@P

@ y

 !

� 12 u
@(rh )

@x
� @(rh)

@ t

� �
(1)

where the following dimensionless groups apply:

x � x

b
, y � y

a
, r � r=r0, ç � ç

ç0

h � h

Rx

, P � P

E9
, U� � uç0

Rx E9
(2)

t � E9U� t=ç0

For the purpose of discretization the following parameter is

defined:

ö � Ph3=2 (3)

Rearranging the Reynolds equation in terms of the above

parameter gives

@
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(4)

It should be noted that r is assumed to remain constant

with time. The implication of this assumption is that an

approximate steady state solution with an average squeeze

velocity is obtained (rather than an instantaneous value for

squeeze velocity that would normally be calculated in a

non-steady state dynamic solution). For low values of

squeeze velocity, as is the case for all the solutions

presented here, the error in assuming constant r with time

is likely to be quite small. The solution nevertheless can

only be considered as approximate.

2.2 Lubricant density±pressure dependence

The density±pressure relationship used is taken from

Dowson and Higginson [5], in dimensionless form as

r � 1� åPE9

1� îPE9
(5)

where å and î are constants related to the type of lubricant

employed.

2.3 Lubricant viscosity±pressure relationship

Roelands [31] viscosity±pressure relationship is taken in

dimensionless form as

ç � ç1
ç0

� �1ÿ(1�PE9=ã) Z

(6)

where Z is the viscosity pressure index, ç1 �
0:631 3 10ÿ4 Pa s and ã � 1:9609 3 108 N=m2.

2.4 The elastic film shape

The film shape in the dimensionless form is of the same

form as that proposed in references [32±35]:

h(x, y) � H0 � b2(xÿ m)2

2R2
x

� a2(yÿ l)2

2Rx Ry

� ä(x, y)

Rx

(7)

where H0 is the central film thickness and ä(x, y) is the

dimensionless elastic deflection of the contiguous contact-

ing bodies.

2.5 The elasticity equation

When the bodies in contact are treated as elastic half-

spaces, a relationship for ä(x, y) is obtained using the

following force±displacement relationship:

ä � 2P

ð

�a
ÿa

�b
ÿb

dx1 dy1

[(yÿ y1)2 � (xÿ x1)2]1=2
(8)

The above equation can be solved analytically for a

constant pressure acting over an element. This will yield a

set of influence coefficients that enable the evaluation of

contact deflections by the superposition principle as

ä I ,J (x, y) � 2

ð

X2 l c

j�1,2,...

X(m�n)d

i�1,2,...

Pi, j Di�, j� (9)

where according to Johnson [36]

c � number of divisions in the semimajor axis

n � constant used to determine the length of the outlet

region

d � number of divisions in the semiminor axis
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i� � jI ÿ ij � 1

j� � jJ ÿ jj � 1
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(10)

3 THE NUMERICAL SOLUTION

3.1 The solution procedure

The solution procedure is highlighted by the computational

flow diagram in Fig. 1. To solve the EHL of a point contact

under combined rolling and squeeze-film motion the

Reynolds equation, the elastic film shape and the lubricant

state equations described are solved simultaneously by

employing the following procedure:

1. For a chosen applied load and geometry, the footprint

dimensions a and b of the Hertzian elastostatic dry

contact and the corresponding elliptical parameter K

are first obtained.

2. The Hertzian dry contact pressure distribution is used

as an initial guess for the solution of the lubricant state

equations, and also for the solution of the Reynolds

equation by Gauss±Seidel iterations. The method of

solution is based upon the central difference scheme

approximation of a rectangular two-direction regular

grid of 67 in the direction of entraining motion with 17

elements in the lateral direction. Owing to the sym-

metric nature of the problem in the transverse direction

to that of the entraining motion, it is only necessary to

undertake the solution for half the contact domain.

The solution methodology utilizes a forward iteration

procedure from an initially assumed pressure distribution

(i.e. the elastostatic Hertzian pressure distribution). This

enables the calculation of the corresponding elastic

deformation of the semi-infinite solids to be carried out.

The subsequent solution of the Reynolds equation provides

the hydrodynamic pressure distribution. This iterative

process continues in order to obtain the converged pressure

distribution, the film shape for a given load and other given

operating conditions such as the speed of entraining

motion. The solution requires the use of an over-relaxation

factor for rapid convergence of the innermost loop (loop I)

and an under-relaxation factor for convergence of the

pressure and load loops (loops I and II). The convergence

criterion requires the sum difference of successive pressure

distributions to be within 10 per cent of the sum of the

calculated pressure distribution. The computation time on a

Pentium pro 200 MHz is approximately 0.5±5 h, depending

upon the operating condition.

3.2 Solution for ö

Equation (5) is discretized in terms of ö using the standard

central difference scheme as follows:

öi, j,n�1 � öi, j,n

ÿ
ë(M i, j ÿ Ai, jöi�1, j,n ÿ Bi, jöi, jÿ1,n�1 ÿ

Ci, jöiÿ1, j,n�1 ÿ Di, jöi, j�1,n � Li, jöi, j,n)

Li, j

(11)

where ë is an overrelaxation factor used to speed up the

process of convergence, and other terms are provided in the

Appendix.

The pressure elements are calculated, using equation (4),

where the dimensionless central film thickness is obtained

using the following relations:

(H0)new � (H0)old

W

W

� �c

(12)
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Fig. 1 Flow diagram of computational procedures
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where c is a factor which is dependent on W . W and W are

the applied and calculated contact loads respectively, with

the latter given by the instantaneous integrated pressure

distribution over the contact domain as

W � E9ab

�m�n

0

�2 l

0

P dx dy (13)

4 RESULTS AND DISCUSSION

There are five main parameters that govern the pressure

distribution and film shape in the elastohydrodynamic

point contact condition. These are the load parameter W�,
speed parameter U�, materials parameter G�, normal

approach parameter S� and contact ellipticity ratio K. The

effects of these parameters on the pressure distribution and

the corresponding film thickness are described in this

paper.

Figures 2a and b depict the results obtained for pressure

distribution and film thickness variation with an increasing

magnitude of the normal approach parameter (i.e. an

increasing squeeze velocity), and with other governing

parameters remaining constant. With increasing squeeze

velocity the load carrying capacity increases. When the

load parameter is kept constant, the resulting effect is an

increase in the magnitude of the pressure spike and a

corresponding increase in the minimum exit film. This

trend is also observed in the numerical solutions of Mostofi

and Gohar [21] for elliptical point contacts and Rahnejat

[22] for finite line contacts. An important feature of the

pressure distribution at higher values of the normal

approach parameter is the `convergence' of the primary

and secondary pressure peaks, resulting in a pressure spike

considerably in excess of the maximum Hertzian pressure.

The implication of this is an increasing chance of induced

subsurface fatigue failure, discussed in some detail by

Houpert et al. [11] and in a recent paper by Johns-Rahnejat

and Gohar [37]. As the squeeze velocity increases, the

accuracy of the steady state solution with a constant (an

average) value for squeeze velocity decreases as opposed to

a non-steady state solution, incorporating the instantaneous

squeeze velocity. Therefore, the pressure profile with the

highest squeeze velocity at S� � ÿ8:41 3 10ÿ16 (corre-

sponding to ÿ0:05 mm=s) tend to have a larger degree of

inaccuracy at the same speed of entraining motion. This

has been reported by Wijnant and Venner [24].

Figures 3a and b show three-dimensional pressure

distributions corresponding to the two-dimensional pres-

sure profiles of Fig. 2a for the cases of pure entraining

motion and S� � ÿ2:52 3 10ÿ16 (a squeeze velocity of

0:015 mm=s). The corresponding lubricant film shapes are

shown in Fig. 3b. It can be observed that the minimum film

occurs at the trailing edge of the contact under pure

entraining motion and tends towards the side constriction

as a normal approach is introduced. This is more clearly

shown in Fig. 4, where the contour in Fig. 4a represents

pure entraining motion and that in Fig. 4b illustrates the

combined entraining and squeeze-film action.

Good agreement is obtained between the results

presented in this paper and those reported by Hamrock and

Dowson [34] and Chittenden et al. [38] under the same

pure entraining conditions (Fig. 5). The lines in this figure

are obtained using the oil-film extrapolated equations of

references [34] and [38]. The points plotted in the figure

show the numerical results obtained in the current analysis.

All these solutions are mainly lightly loaded contacts. In

the case of this paper the solutions are in the region áP0 �
4ÿ8 which puts them in the same region in the Greenwood

[39] clearance charts as those of Hamrock and Dowson

[34].

It can be observed that the numerical results obtained

here fall in between the findings of reference [34] and

those of reference [38] for the cases of pure entraining

motion. In this paper, note should be taken of the increase

in the value of the minimum film thickness when a normal

approach velocity is included, at the same value of load.

This increases the contact load-carrying capacity, with all

other conditions remaining constant. The same trend is also

observed in references [21] and [22]. The extrapolated

equation (14), including the effect of squeeze, is also

plotted to show the degree of conformity with the actual

numerical results.

In the contact of many machine elements the squeeze-

film motion contributes significantly in the formation of a

coherent film as corroborated by these results. Such

conditions contribute to absence of wear, e.g. in cam±

follower contacts, as reported by Hamilton [40]. The

squeeze-film action is also a very useful mechanism at the

start-up in many machine elements.

Table 1 shows a list of results for film thickness

obtained under various conditions. The numerical solution

results hmin are listed in the eighth column, with the ~Hmin

values from the current regression formula indicated in

the ninth column. The values are clearly very close,

indicating that a close fit has been achieved. The tenth

column lists the minimum film thickness values Ĥmin

under the same conditions, using the regression formula of

Hamrock and Dowson [34]. The last column shows the

percentage error between the values obtained in the ninth

and tenth columns. The current regression formula

includes the effect of squeeze. The same ranges of values

have been employed for the variations in the governing

load, speed, material and ellipticity parameters as those in

reference [34]. A similar range for squeeze velocity is

employed as that in reference [21]. There are 50

simulation run results in the table which are mostly

employed to obtain a regression formula for the lubricant

film thickness at the position of minimum exit as

hmin � 2:55(G�)0:476(W�)ÿ0:062(U�)0:658

3 (ÿ22:2 3 1014S� � 1)(1ÿ eÿ0:675K ) (14)
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Fig. 2 (a) Pressure distribution for different squeeze velocities. (b) Film thickness profiles for different squeeze

velocities
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Fig. 3 (a) Three-dimensional pressure distribution and film shape for pure rolling (relating to Figs 2a and b: (i)

pressure distribution, (ii) film shape). (b) Three-dimensional pressure distribution and film shape for

combined rolling and squeeze action (S� � ÿ2:52 3 10ÿ16) (relating to Figs 2a and b): (i) pressure

distribution, (ii) film shape)

Fig. 4 Two-dimensional oil-film contours (relating to the three-dimensional plot in Fig. 3): (a) pure entraining

motion; (b) combined entraining and squeeze motion (S� � ÿ2:52 3 10ÿ16). (Note that K � 6; the figure

is stretched in the direction of entraining motion for presentation)

Proc Instn Mech Engrs Vol 212 Part J J02097 # IMechE 1998

408 D JALALI-VAHID, H RAHNEJAT AND Z M JIN



Table 1 Effect of the dimensionless load, rolling velocity, squeeze velocity, material parameter and ellipticity parameter on the

dimensionless minimum film thickness

dh

dt

hmin ÿ ~Hmin

~Hmin

~Hmin ÿ Ĥmin

~Hmin

Number W� U� K G� (m=s) S� hmin
~Hmin Ĥmin (%) (%)

1 0.7216E-6 0.0842E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 3.90E-6 3.88E-06 3.95E-06 0.52 1.65
2 0.7216E-6 0.1683E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 6.25E-6 6.13E-06 6.32E-06 1.96 3.21
3 0.7216E-6 0.2524E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 8.25E-6 8.00E-06 8.33E-06 3.13 4.14
4 0.7216E-6 0.3365E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 9.96E-6 9.67E-06 1.01E-05 3.00 4.80
5 0.7216E-6 0.4208E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 1.13E-5 1.12E-05 1.18E-05 0.89 5.32
6 0.7216E-6 0.5889E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 1.45E-5 1.34E-05 1.48E-05 8.21 6.10
7 0.7216E-6 0.8414E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 1.83E-5 1.77E-05 1.89E-05 3.39 6.93
8 0.7216E-6 0.1263E-10 6.00 4860 ÿ0.000 00 ÿ0.000 00 2.40E-5 2.31E-05 2.49E-05 3.90 7.89
9 0.7216E-6 0.1683E-10 6.00 4860 ÿ0.000 00 ÿ0.000 00 2.90E-5 2.79E-05 3.03E-05 3.94 8.58

10 0.7216E-6 0.2525E-10 6.00 4860 ÿ0.000 00 ÿ0.000 00 3.75E-5 3.64E-05 3.99E-05 3.02 9.55
11 0.7216E-6 0.2946E-10 6.00 4860 ÿ0.000 00 ÿ0.000 00 4.13E-5 4.03E-05 4.43E-05 2.48 9.92
12 0.7216E-6 0.3367E-10 6.00 4860 ÿ0.000 00 ÿ0.000 00 4.50E-5 4.40E-05 4.85E-05 2.27 10.25
13 0.7216E-6 0.4208E-10 6.00 4860 ÿ0.000 00 ÿ0.000 00 5.14E-5 5.10E-05 5.65E-05 0.78 10.79
14 0.7216E-6 0.5048E-10 6.00 4860 ÿ0.000 00 ÿ0.000 00 5.75E-5 5.74E-05 6.39E-05 0.17 11.23

15 0.7216E-6 0.3365E-11 6.00 2430 ÿ0.000 00 ÿ0.000 00 6.93E-6 6.95E-06 7.21E-06 0.29 3.79
16 0.4567E-6 0.2130E-11 6.00 3840 ÿ0.000 00 ÿ0.000 00 6.53E-6 6.58E-06 6.84E-06 0.76 3.93
17 0.3685E-6 0.1682E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 6.36E-6 6.39E-06 6.64E-06 0.47 3.98
18 0.2947E-6 0.1346E-11 6.00 6075 ÿ0.000 00 ÿ0.000 00 6.25E-6 6.22E-06 6.47E-06 0.48 4.05
19 0.2456E-6 0.1122E-6 6.00 7290 ÿ0.000 00 ÿ0.000 00 6.15E-6 6.08E-06 6.33E-06 1.15 4.10

20 0.3685E-6 0.1682E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 6.36E-6 6.39E-06 6.64E-06 0.47 3.98
21 0.3685E-6 0.1682E-11 6.00 4860 ÿ2.50E-6 ÿ4.21E-17 7.31E-6 6.91E-06 Ð 5.79 Ð
22 0.3685E-6 0.1682E-11 6.00 4860 ÿ5.00E-6 ÿ8.41E-17 7.92E-6 7.43E-06 Ð 6.59 Ð
23 0.3685E-6 0.1682E-11 6.00 4860 ÿ1.00E-5 ÿ1.68E-16 9.05E-6 8.47E-06 Ð 6.85 Ð
24 0.3685E-6 0.1682E-11 6.00 4860 ÿ1.25E-5 ÿ2.10E-16 9.59E-6 8.99E-06 Ð 6.67 Ð
25 0.3685E-6 0.1682E-11 6.00 4860 ÿ1.50E-5 ÿ2.52E-16 1.01E-5 9.52E-06 Ð 6.09 Ð
26 0.3685E-6 0.1682E-11 6.00 4860 ÿ3.00E-5 ÿ5.05E-16 1.29E-5 1.26E-05 Ð 2.38 Ð
27 0.3685E-6 0.1682E-11 6.00 4860 ÿ3.50E-5 ÿ5.89E-16 1.36E-5 1.37E-05 Ð 0.73 Ð
28 0.3685E-6 0.1682E-11 6.00 4860 ÿ5.00E-5 ÿ8.41E-16 1.57E-5 1.68E-05 Ð 6.55 Ð

29 0.3685E-7 0.1682E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 7.23E-6 7.37E-06 7.86E-06 1.90 6.65
30 0.1105E-6 0.1682E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 6.89E-6 6.88E-06 7.25E-06 0.15 5.37
31 0.2210E-6 0.1682E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 6.59E-6 6.59E-06 6.89E-06 0.00 4.57
32 0.2487E-6 0.1682E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 6.56E-6 6.54E-06 6.83E-06 0.31 4.43
33 0.2578E-6 0.1682E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 6.56E-6 6.53E-06 6.82E-06 0.46 4.39
34 0.2763E-6 0.1682E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 6.51E-6 6.50E-06 6.78E-06 0.15 4.31
35 0.2947E-6 0.1682E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 6.47E-6 6.47E-06 6.75E-06 0.00 4.23
36 0.3685E-6 0.1682E-11 6.00 4860 ÿ0.000 00 ÿ0.000 00 6.36E-6 6.39E-06 6.64E-06 0.47 3.98

(continued over)

Fig. 5 Variation in the minimum film thickness with load (U� � 1:682 3 10ÿ12, G� � 4860, K � 6)
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APPENDIX
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