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Transient analysis of isothermal elastohydrodynamic
circular point contacts

D Jalali-Vahid1, H Rahnejat2, Z M Jin1 and D Dowson2*
1 Department of Mechanical Engineering, University of Bradford, UK
2 Department of Mechanical Engineering, Loughborough University, UK

Abstract: In this paper a solution method is presented for the transient isothermal elasto-
hydrodynamic lubrication of point contact conjunctions, based upon the Newton±Raphson scheme
and low iteration relaxation. The numerical results are compared with the numerical and
experimental observations of others for the circular point contact of a ball against a ¯at glass disc
under oscillating conditions. Good agreement has been found with other numerical solutions. The
comparison with the experimental results shows good qualitative agreement.
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NOTATION

a semi-major axis of the contact ellipse in the
transverse direction (m)

b semi-minor axis of the contact ellipse in the
entraining direction (m)

D deformation matrix (m)
E modulus of elasticity (Pa)
E 0 equivalent Young’s modulus

ˆ 2=‰…1 ¡ ¸2
A†=EA ‡ …1 ¡ ¸2

B†=EBŠ (Pa)
G* material parameter ˆ ¬E 0

h ®lm thickness (m)
Hi; j…·t† dimensionless ®lm thickness as a function of

time ˆ hi; j…t†Rx=b2

H0…·t† dimensionless constant de®ned in equation (4)
K ellipticity parameter ˆ a=b
M number of nodes in the x direction
n time step
N number of nodes in the y direction
p pressure (Pa)
P dimensionless pressure ˆ p=Ph

Ph maximum Hertzian pressure
Rx equivalent radius of contact in the x

direction (m)
Si; j shape of the contacting surface

t time (s)
·t dimensionless time ˆ …tuav†=b
T period (s)
ue mean velocity components in the x direction

ˆ …u1 ‡ u2†=2 (m/s)
u0 nominal velocity (m/s)
u1 surface velocity of the sphere in the x direction

(m/s)
u2 surface velocity of the plane in the x direction

(m/s)
U* dimensionless velocity ˆ …u²0†=…E 0Rx†
W normal applied load (N)
W0 nominal load (N)
W* dimensionless load ˆ W=…E 0R2†
x Cartesian coordinate
X x=b
y Cartesian coordinate
Y y=a
z viscosity pressure index

¬ pressure±viscosity coe� cient …m2=N†
¯i; j…·t† total elastic deformation as a function of time
¢t time interval (s).
¢X distance between two neighbouring points in the

X direction
¢Y distance between two neighbouring points in the

Y direction

² lubricant viscosity (Pa s)
·² dimensionless lubricant viscosity ˆ ²=²0

²0 atmospheric viscosity (Pa s)

³ angle ˆ !t
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¸ Poisson’s ratio

» lubricant density (kg/m3)

»0 atmospheric density (kg/m3)
·» dimensionless density ˆ »=»0

! angular velocity
« under-relaxation factor

1 INTRODUCTION

A considerable amount of research has been devoted to
the study of elastohydrodynamic lubrication (EHL) in
machine elements such as bearings, gears and cam and
follower pairs. Most of the initial investigations were
concerned with the study of lubricant ®lm thickness
under steady state conditions. The absence of wear
under conditions in which steady state analysis predicted
zero or exceedingly small ®lm thickness remained a sig-
ni®cant obstacle. These included the diminution of the
lubricant ®lm on the sharp rise and fall of cam lift in
the vicinity of the cam nose, where inlet boundary rever-
sals take place. Although the contact transit time is short
lived and the lubricant ®lm is rapidly replenished, the
predicted steady state oil-®lm thickness was insu� cient
to guard against wear. The same problem was also
noted in bearings and gears in cold start-up conditions
or at low speeds of entraining motion. A larger class of
problem was also discovered, where the presence of a
lubricant ®lm under large impact loads (in, for example,
crankshaft journal bearings) or with no entraining
velocity (as in synovial joints in stationary positions)
could not be explained. The search for an explanation
led to the recognition of the signi®cance of squeeze-®lm
action, providing enhanced load-carrying capacity
under transient conditions.

Initial solutions for pure squeeze action were obtained
as early as the 1950s by Christensen [1] for hydrodynamic
conditions with isoviscous and piezoviscous lubricants.
Similar studies were also undertaken by Herrebrugh [2].
Later, Christensen [3], Conway [4] and Lee and Cheng
[5] reported pure squeeze solutions under elastohydro-
dynamic conditions. More recent solutions have been
reported for both rigid and elastic ellipsoids by Bedewi
et al. [6] and Rahnejat [7, 8]. The latter also reported
solutions for combined entraining and squeeze-®lm
action under quasi-static conditions for ®nite line con-
tacts of roller bearings. A similar solution for elliptical
point contact conditions has been reported by Mosto®
and Gohar [9]. A mixed regime of lubrication, including
an extrapolated equation with the eVect of squeeze-®lm
motion from reference [9], was included in the model of
a deep groove ball bearing under dynamic conditions
by Rahnejat and Gohar [10]. However, in all these
analyses the eVect of inertial dynamics was ignored.

Transient solutions, particularly for isothermal elasto-
hydrodynamic conditions, have recently been obtained

by a number of researchers. These include the normal
bouncing of an elastic ball on an oily plate by Dowson
and Wang [11]. An interesting feature of the transient
response was observed to be the rather sharp and very
large rise in pressure during the rebound of the ball.
These ®ndings conformed well with the experimental
observations of Safa and Gohar [12]. These transient
solutions pave the way for realistic investigations of the
dynamics of ball and rolling bearing contacts under
cyclic loading, when the rolling element enters or leaves
the loaded or unloaded regions of the bearing that are
created by the mutual convergence or separation of bear-
ing rings. Nevertheless, a complete solution for the entire
bearing remains computationally elusive and calls for
very large memory requirements and exceedingly long
computation times. In this case the only practicable
option still remaining is the quasi-static solution for the
lubricant ®lm thickness for a particular ®lm location
and in very small steps of time, as reported in references
[7], [8] and [10]. The drawback is that the squeeze velocity
employed can only be considered as an average value,
as opposed to an instantaneous one determined by the
prevailing transient conditions.

This problem can be overcome by means of a com-
bined solution of inertial dynamics and transient EHL
for a single ball (representing typical conditions during
the orbital traverse under steady state bearing oscilla-
tions, i.e. limit cycle vibrations). Such an approach has
been highlighted by Wijnant and Venner [13], who have
shown that with dominating entraining motion the
transient solutions approach the equivalent steady state
solutions. When a signi®cant squeeze-®lm action takes
place, the instantaneous value of the squeeze-®lm
velocity diverges from its steady state average value;
this leads to noticeable diVerences between the transient
and quasi-static solutions. The observations of Wijnant
and Venner were also in line with those of Dowson and
Wang [11] and Safa and Gohar [12].

A numerical algorithm that combines the Newton±
Raphson scheme and low relaxation iteration for the
solution of general entraining and squeeze-®lm action
in point contact EHL problems is presented in this
paper. This method has also been employed by Ai and
Yu [14] for the case of line contact transient EHL prob-
lems. Furthermore, this paper provides solutions that
conform well with the optical interferometric studies
under oscillating conditions reported by Ren et al. [15].
Even better agreement is obtained with the numerical
results of Oh [16].

2 BACKGROUND THEORY

2.1 Reynolds equation

The general form of the Reynolds equation for transient
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conditions is given as

@

@x

»h3

²

@p

@x

Á !

‡ @
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»h3

²

@p
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Á !

ˆ 12 uav

@…»h†
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‡ h
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µ ¶
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where the following dimensionless groups apply:

X ˆ x

b
; ·» ˆ »

»0

; H ˆ hRx

b2
; P ˆ p

Ph

Y ˆ y

a
; ·² ˆ ²

²0

; ·t ˆ uavt

b
; U* ˆ u²0

RxE 0

(2)
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where

¶ ˆ 12R2
x²0ue

b3Ph

The last term in equation (3) represents the time depen-
dent portion of the Reynolds equation. It allows for
the mutual approach and separation of loaded rolling
members. It should be noted that the Reynolds equation
is based on the assumption that the inertial forces within
the ¯uid are small compared with the other forces that
are present, such as gravity, pressure and shear. This is
valid because of the very small mass of ¯uid that is
actually within the contact zone at any given instance.

The boundary conditions that are imposed on the
Reynolds equation are taken as

X ˆ 0; X ˆ Xexit ) P ˆ 0

Y ˆ 0; Y ˆ Yexit ) P ˆ 0

and for the outlet region

P ˆ @P

@X
ˆ @P

@Y
ˆ 0

2.2 Elastic ®lm shape

The ®lm thickness between the contacting surfaces is
described as

Hi; j…·t† ˆ H0…·t† ‡ Si; j ‡ ¯i; j…·t† …4†

where ¯i j…·t † is the total elastic deformation of the con-
tiguous bodies in contact. In non-dimensional form,

¯i; j…·t† can be written as

¯K;L ˆ 2

p
Ph

E 0

XN

j ˆ1;2;...

XM

i ˆ 1;2;...

Pi; j…·t†Di¤ ; j¤ …5†

where according to Johnson [17]

i* ˆ jK ¡ i j ‡ 1

j* ˆ jL ¡ j j ‡ 1

The contact in¯uence coe� cient matrix, D, is provided in
Appendix 1.

2.3 Density±pressure relationship

The lubricant density variation with pressure is de®ned
by Dowson and Higginson [18] as

·»…P† ˆ 1 ‡ "PhP

1 ‡ ±PhP
…6†

where " and ± are constants related to the type of
lubricant employed.

2.4 Viscosity±pressure relationship

The variation in lubricant viscosity with pressure is given
by Roelands [19] as

·² ˆ ²1
²0

» ¼ ‰1¡…1‡PhP=®†zŠ
…7†

where z is the viscosity pressure index, ²1 ˆ
0:631 £ 10¡ 4 Pa s and ® ˆ 1:9609 £ 108 N/m2.

2.5 Load equation

At any instant of time, the external load is balanced
by integrated oil-®lm pressure distribution. In non-
dimensional form, the instantaneous load equation can
be written as

Z 1

¡ 1

Z 1

¡ 1
P…X; Y †dX dY ˆ

2

3
p …8†

3 NUMERICAL SOLUTION

By using a mixed second-order central and ®rst-order
backward diVerence in space and backward diVerence
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in time, the dimensionless Reynolds’ equation at each
location i; j can be written as

Fi; j ˆ 1
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i; j

¢·t

¶¼

(9)

The complete discretized forms for all the partial deriva-
tives are given in Appendix 2.

Since the pressure pro®le and the ®lm thickness must
be compatible, the coupled Reynolds, elasticity and
load balance equations must be solved simultaneously
in the contact conjunction at each time step n. In this
study the Newton±Raphson method is used to solve
the coupled system equation . Therefore, the modi®ed
Newton±Raphson equation for the Reynolds’ equation
(3) can be expressed as

XM¡ 1

l ˆ 2

XN¡ 1

k ˆ2

Ji j;kl ¢Pk; l ˆ ¡Fi; j …10†

for

2 4 i 4 M ¡ 1 and 2 4 j 4 N ¡ 1

The Jacobian matrix is given by the following relation:

Ji j;kl ˆ
@Fi; j

@Pk; l

…11†

To save in computer storage, the algorithm of Hsu and
Lee [20] is extended for transient EHL problems where

@Fi; j=@Fk;l are set to zero for k less than i ¡ 1 and greater
than i ‡ 1, and for l less than j ¡ 1 and greater than j ‡ 1.
Therefore, the Jacobian matrix decreases from nine
terms in each row to ®ve terms. In order to avoid compu-
ter storage and computing time problems for the matrix
inversion in the Gauss elimination method, the Gauss±
Seidel iterative method is used to solve the system
equations (10). Therefore, the system equations can be
rewritten as

¢P n
k; l ˆ

¡Fk; l ¡ Jkl;k¡ 1l ¢P n
k¡ 1l ¡ Jkl;k‡ 1l ¢P n ¡1

k‡ 1l

¡ Jkl;kl¡1 ¢P n
kl¡1 ¡ Jkl;kl‡1 ¢Pn ¡ 1

kl‡1

Jkl;kl

(12)

The pressure can be updated by using an under-
relaxation factor, «, as follows:

Pnew
i; j ˆ Pold

i; j ‡ « ¢Pi; j …13†

The numerical algorithm starts from a steady state solu-
tion, when W ˆ W0. The cyclic loading period, tc ˆ
2p=!, is divided into 512 steps. In the second time step,
by changing the applied load and using Pi; j and Hi; j

from the previous time steps, the transient Reynolds
equation is solved and the pressure distribution for the
current time step is obtained. The convergence of pres-
sure is checked and, if the convergence criterion is satis-
®ed, the total force is computed. The last step is to check
the force balance equation for this time step. If it is
satis®ed, the programme will go to the next time step
or H0…·t† is changed and the transient Reynolds equation
is solved to determine the new pressure distribution. The
programme is continued until a periodic solution is
achieved. In general, a periodic solution can be achieved
within ®ve cycles.

Finally, the convergence criteria for the pressure and
load balance equations are

³ P
i

P
j …Pnew

i; j ¡ Pold
i; j †2

M £ N

´1=2

4 10¡4 …14†

­­­­
Z Z

P…X; Y†dX dY ¡
2

3
p

­­­­4 10¡ 4 …15†
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4 SIMULATION RESULTS

Nishikawa et al. [21] have studied the transient EHL
problem in the contact of a steel ball and a reciprocating
glass disc under both pure rolling or pure sliding. The
diameter of the ball was 25.4 mm and the reduced elastic
modulus for the contact was 117 GPa. Their optical
interferometric study revealed that at the centre of the
stroke the central oil-®lm thickness was almost the
same as that under unidirectional motion, and that at
the end of the stroke the minimum oil-®lm thickness
moved towards the exit side. The test conditions adopted
by Nishikawa et al. [21] for the case of pure rolling have
been used here in a simulation study. These are: a
mineral oil with a kinematic viscosity of 405 mm2/s at
40 8C and 31 mm2/s at 100 8C, a speci®c gravity of
0.884 at 15 8C and a piezoviscosity index, ¬, of
19 GPa ¡ 1. The reciprocating sinusoidal motion is repre-
sented by the following average entraining velocity,
ue ˆ …u1 ‡ u2†=2, in the contacting region:

ue ˆ u0 sin…2pt† …16†

Figure 1a shows the experimental results obtained by
Nishikawa et al. [21]. The corresponding numerical pre-
dictions are shown in Fig. 1b. The numerical results
agree well with the experimental ®ndings, in both cases
depicting the ®lm shape through the centre of the contact
in the direction of entraining motion. They both show
that, at the ends of the stroke (t ˆ 0 and t ˆ T=2), oil
is entrapped between the contiguous bodies. At t ˆ 0,
the entraining motion is towards the right, and the thick-
ness of the local minimum ®lm is greater on the left-hand
side (i.e. at the contact inlet ) than at the minimum exit at
the right side. This situation is reversed at t ˆ T=2.
During the half-cycle (i.e. 0 4 t 4 T=2), the minimum
lubricant ®lm thickness is gradually pushed towards
the exit as the speed of entraining motion is increased.
At t ˆ T=4, there is no rate of change in entraining
motion and the ®lm thickness is almost the same as
that obtained under steady state unidirectional motion.
At the ends of the strokes, the entraining motion ceases

and the lubricant ®lm is momentarily sustained by
squeeze-®lm action. The ®lm of oil entrapped between
the minima along the centre of the contact is reminiscent
of the dimple shape formed under pure squeeze-®lm
motion in, for example, the approach of a ball to an
oily plate, observed by Dowson and Wang [11]. At the
ends of each stroke, inlet reversal takes place, replenish-
ing the oil-®lm thickness.

The experimental results presented by Nishikawa et al.
[21] cover half the reciprocating cycle. The numerical
predictions shown in Fig. 1b represent the full cycle.
The results for the second half of the cycle are an
almost mirror image of the ®rst half of the cycle. It can
be seen that there is good agreement between the numer-
ical predictions and the experimental measurements.

Another simulation run of the model was undertaken
to enable a comparison to be made between the theoreti-
cal predictions and the experimental results reported by
Ren et al. [15], where an optical interferometric study
of the EHL ®lm in a nominal point contact under
unsteady conditions was carried out. An exciter was
used with their ball and plate machine for cyclical varia-
tion of the applied load between a steel ball and the opti-
cally ¯at glass plate. The applied cyclic load was given by
W ˆ W0 ‡ ¢W sin !t. The relevant data are provided in
Table 1. The authors provided the ®lm thickness pro®les
in the direction of entraining motion for the positions of
the central and minimum exit. Figure 2a shows the
experimental unsteady oil-®lm pro®les through a cycle
of the applied load (9±69 N). The authors noted that
the minimum ®lm thickness along the centre of the con-
tact in the direction of entraining motion remained
almost constant with time. Furthermore, they pointed
out that in the part of the cycle corresponding to an
increasing load (i.e. ¡p=2 ¹ p=2) the ®lm thickness
could increase, while the contact zone expanded. In the
subsequent part of the cycle, with a decreasing value of
load (i.e. p=2 ¹ 3p=2), the contact zone decreased in
size and the ®lm thickness was reduced. A dimple-
shaped ®lm resulted in the outlet region when the load
was increasing. This dimple, reminiscent of a pure
squeeze eVect, is shifted to the outlet region on account

Table 1 Values of parameters used by Ren et al. [15]

Numbers Parameters Symbols Quantities and formulae

1 Velocity (m/s) u 0.15
2 Load (N) W W ˆ W0 ‡ 30:0 sin …!t †
3 Nominal load (N) W0 39.0
4 Angular velocity (rad/s) ! 2p
5 Ball radius (m) R 0.0127
6 Viscosity at P ˆ 0 (Pa s) ²0 0.6948
7 Density at P ˆ 0 (kg/cm3) »0 0:85 £ 10¡ 3

8 Temperature (8C) T 15.0
9 Poisson’s ratio ¸1 (glass) 0.25

10 Poisson’s ratio ¸2 (ball, steel) 0.3
11 Young’s modulus (Pa) E1 (glass) 0:0746 £ 1012

12 Young’s modulus (Pa) E2 (ball, steel) 0:2110 £ 1012
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Fig. 1 Transient EHL central ®lm pro®les: (a) experimentally measured (after Nishikawa et al. [21]);
(b) numerically predicted

1164 D JALALI-VAHID, H RAHNEJAT, Z M JIN AND D DOWSON

Proc Instn Mech Engrs Vol 215 Part C C02199 # IMechE 2001



Fig. 2 (continued over)
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Fig. 2 (a) Experimentally measured and (b) numerically predicted transient EHL central ®lm pro®les (after
Ren et al. [15])
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of the entraining motion by as much as 0.6 mm. The
Hertzian radius varied with the applied load during the
cycle in the range 1:13 £ 10¡ 4±2:23 £ 10¡ 4 mm in the
case of numerical prediction for the same conditions as
reported below.

Figure 2b shows the corresponding unsteady beha-
viour of the EHL ®lm, obtained here by numerical pre-
diction. The overall conformity of the numerical results
with the experimental observations of Ren et al. [15] is
evident. In particular, the emergence of the dimple in
the central oil-®lm thickness pro®le with an increasing
value of the applied load is obtained. This central
dimple is due to the increasing signi®cance of the
squeeze-®lm action in the ¡p=2; p=2 part of the load
cycle. Figure 3 shows the predicted squeeze-®lm velocity
throughout the cycle, with the numbers adjacent to the
curve de®ning the ®lm shapes shown in Fig. 2b.

The oil-®lm pro®le in Fig. 2b for ³ ˆ 0 corresponds to
the instance of maximum squeeze velocity (see point 3 in
Fig. 3 and note that a negative value for squeeze velocity
denotes approaching bodies). The emergence of the
dimple becomes pronounced here and, owing to the
dominant eVect of squeeze, assumes an almost central
position within the contact domain. The maximum
depth for the dimple, however, occurs when the applied
load reaches its peak value (i.e. at p/2), and it moves
towards the exit constriction on account of the eVect of
entraining motion when this is more dominant (see
point 5 in Fig. 3). From here onwards the applied load
gradually decreases and the ®lm thickness pro®les
follow a similar behaviour to those obtained prior to
point 5 in Fig. 3 (an almost symmetric characteristic

about point 5 in Fig. 3 is observed). A quantitative com-
parison is shown in Fig. 4, although a close correlation
between the numerical predictions and the experimental
results would not be expected. This is because the con-
ventional optical interferometric technique employed
by Ren et al. [15] has been shown to be unable accurately
to measure small changes in the oil-®m thickness. This
argument has been corroborated by Sugimura et al.
[22], who have used an interferometric method based
upon spectrometer images for ultrathin ®lms. Indeed,
Ren et al. [15] have not claimed accurate ®lm thickness
measurements. Their interest has been the determination
of ®lm shape under transient conditions. To this end, a
good qualitative agreement has been obtained between
the numerical predictions here and their experimental
®ndings. The apparent insensitivity of the minimum cen-
tral oil-®lm thickness under Ren et al. [15] experiments
corroborates the generally accepted EHL behaviour.
However, the sensitivity of the oil-®lm to squeeze-®lm
motion is also well understood [3, 6, 7, 9, 13], a fact
that is not apparent from the experimental work of
Ren et al. [15]. Indeed, the experimental work carried
out by the same authors [15] for the ®nite line contact
of a roller against a glass disc under transient conditions
is devoid of the central dimple in the ®lm shape with
increasing load. Numerical line contact solution under
non-steady state conditions show that an increasing
squeeze eVect results in the formation of a dimple (see,
for example, reference [14]). Referring back to Fig. 4, it
can be observed that good agreement is found under con-
ditions of pure rolling and separation (at the extremities
of the variations in Fig. 4). These positions correspond to

Fig. 3 Mid-contact central squeeze velocity±time history
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points 1, 2, 8 and 9 in Fig. 3. A large discrepancy is noted
between the numerical predictions and the experimental
®ndings where the eVect of normal approach becomes
signi®cant.

It should be noted that all numerical predictions for
oscillatory point contacts exhibit the same quasi-
harmonic response as in the case of the numerical results
presented here. The agreement between the various
numerical techniques is highlighted later by a com-
parison between the method employed here and that
reported by Oh [16], using ®nite element analysis.

Figure 5 shows the corresponding central pressure
pro®les in the direction of entraining motion for the
various ®lm thickness pro®les shown in Fig. 2b. As
expected, the maximum pressures occur at p/2, where
the applied load is at its maximum value. The transient
pressure pro®les at p/4 and 3p/4 are subject to the
same contact load and therefore have very similar mag-
nitudes. However, the lubricant ®lm thickness at p/4
(corresponding to point 4 in Fig. 3) exhibits a larger
elastic indentation than that at 3p/4 (corresponding to
point 6 in Fig. 3). This is because the squeeze velocity
is larger in the former, resulting in a greater ®lm thick-
ness at the same value of load.

To observe the eVects of increasing load and the
squeeze-®lm eVect, contours of the oil-®lm thickness
for three regions of the load cycle are shown in Fig. 6.
Figure 6a is the oil-®lm contour in the part of the cycle
where the load is increasing with a load of 30 N and

under pure entraining motion (i.e. along the time axis
in Fig. 3, between points 2 and 3). Figures 6b and c
correspond to the unloading part of the cycle, with the
former being at the point with the maximum squeeze
velocity (i.e. between points 7 and 8 in Fig. 3). Figure
6c shows the oil-®lm contour under pure entraining
motion (along the time axis in Fig. 3 between points 8
and 9). The contact loads for these cases were 30 and
10 N respectively. A comparison of the contours in
Figs 6a and c show that the islands of the minimum
oil-®lm thickness move from the side constrictions
towards the rear exit with an increasing value of load
as anticipated. The contours in Fig. 6c conform to the
steady state entraining motion with the central ¯at
region, but the contour in Fig. 6a shows the dimple
that appears in the part of the cycle in which the load
is increasing. Figure 6b represents the same value of
load as in Fig. 6a but has the maximum squeeze velocity
generated during the cycle, showing a return of the mini-
mum ®lm thickness islands to the side constrictions. The
central dimple is reduced in size as the contour
corresponds to the part of the cycle in which the load is
decreasing.

To obtain a veri®cation for the numerical method
presented here for the ®rst time under non-steady condi-
tions, a comparison is made between the present analysis
and the ®ndings by Oh [16], who considered a sinusoidal
variation in contact load according to the relationship
W ˆ W0…1 ‡ e sin !t†, where the chosen value for e

Fig. 4 Prediction of minimum ®lm thickness variation with one cyclic load
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Fig. 5 Numerically predicted transient EHL central pressure pro®les
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Fig. 6 Transient oil-®lm contour corresponding(a) to point a in Fig. 3, (b) to point b in Fig. 3 and (c) to point c
in Fig. 3
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was 0.5 and the frequency was …pE 0=2²0†. This results in
very high-frequency load oscillations with an average
value of 4.15 N.

Oh’s [16] ®nite element results serve a useful purpose
for the comparison with the ®nite diVerence approach
employed in this paper. The data for the analysis are pro-
vided in Table 2. Figure 7 shows a comparison between
the two sets of results. Close agreement is observed for
most of the load cycle. A small divergence is observed
between the two sets of results around the maximum
load region of the cycle, probably owing to the relatively
coarse ®nite element mesh employed by Oh [16].

5 CONCLUSION

A numerical procedure that combines the Newton±
Raphson scheme and low relaxation iterations has been
developed for the analysis of an elastohydrodynamic
circular point contact conjunction under transient iso-
thermal conditions. The numerical results for the tran-
sient ®lm shape conform relatively closely to the
experimental ®ndings of Ren et al. [15] and agree well

with the experimental measurements of Nishikawa et
al. [21]. Further comparisons have been made with pre-
viously reported ®nite element solutions for a circular
point contact subjected to cyclic loading.

Ai and Yu [14] and Ren et al. [15] have observed that
the transient pressure distribution draws to the middle of
the contact in that part of the cycle in which the load is
increasing, with a dimple appearing in the elastic ®lm
shape. In the unloading part of the cycle, the pressure
distribution spreads over the inlet and the outlet regions.
The repetitive load cycles, leading to the formation of the
surface dimple, can lead to premature fatigue spalling of
the ball [15].

Transient conditions introduced by variation in the
speed of entraining motion in a reciprocating contact
show lubricant ®lm entrapment at the ends of the
stroke, where inlet reversals take place and the lubricant
®lm is momentarily supported by pure squeeze-®lm
action.

An important point emerging from this investigation is
the dearth of experimental work for transient EHL con-
ditions with accurate methods of ®lm thickness measure-
ment that correspond to conditions that are prevalent in
bearings and gears subjected to cyclic loads. Recent
investigations have concentrated largely upon low-load
applications with ultrathin ®lms, such as those in mecha-
tronic machines or in instrument bearings [22].
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APPENDIX 2
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